Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling. 2015

Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Vasopressin controls osmotic water transport in the renal collecting duct through regulation of aquaporin-2 (AQP2). We carried out bioinformatic analysis of quantitative proteomic data from the accompanying article to investigate the mechanisms involved. The experiments used stable isotope labeling by amino acids in cell culture in cultured mpkCCD cells to quantify each protein species in each of five differential-centrifugation (DC) fractions with or without the vasopressin analog 1-desamino-8-d-arginine-vasopressin (dDAVP). The mass spectrometry data and parallel Western blot experiments confirmed that dDAVP addition is associated with an increase in AQP2 abundance in the 17,000-g pellet and a corresponding decrease in the 200,000-g pellet. Remarkably, all subunits of the cytoplasmic ribosome also increased in the 17,000-g pellet in response to dDAVP (P < 10(-34)), with a concomitant decrease in the 200,000-g pellet. Eukaryotic translation initiation complex 3 (eIF3) subunits underwent parallel changes (P < 10(-6)). These findings are consistent with translocation of assembled ribosomes and eIF3 complexes into the rough endoplasmic reticulum in response to dDAVP. Conversely, there was a systematic decrease in small GTPase abundances in the 17,000-g fraction. In contrast, most proteins, including protein kinases, showed no systematic redistribution among DC fractions. Of the 521 protein kinases coded by the mouse genome, 246 were identified, but many fewer were found to colocalize with AQP2 among DC fractions. Bayes' rule was used to integrate the new colocalization data with prior data to identify protein kinases most likely to phosphorylate aquaporin-2 at Ser(256) (Camk2b > Camk2d > Prkaca) and Ser(261) (Mapk1 = Mapk3 > Mapk14).

UI MeSH Term Description Entries
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes

Related Publications

Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
December 2015, American journal of physiology. Cell physiology,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
November 2012, American journal of physiology. Cell physiology,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
February 2016, Physiological genomics,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
February 2010, Proceedings of the National Academy of Sciences of the United States of America,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
February 2010, Journal of the American Society of Nephrology : JASN,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
January 2013, American journal of physiology. Renal physiology,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
July 1995, The Journal of clinical investigation,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
December 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
February 2004, American journal of physiology. Renal physiology,
Chin-Rang Yang, and Viswanathan Raghuram, and Milad Emamian, and Pablo C Sandoval, and Mark A Knepper
June 1988, European journal of cell biology,
Copied contents to your clipboard!