Molecular cloning, characterization and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Centella asiatica L. 2015

Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.

3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica. Sequence analysis indicated that the cDNA was of 1965 bp, which had an open reading frame of 1617 bp and encoded a protein containing 539 amino-acids with a mol wt of 57.9 kDa. A BLASTp search against non-redundant (nr) protein sequence showed that C. asiatica HMGR (CaHMGR) has 65-81% identity with HMGRs from different plant species and multi-alignment comparison analysis showed the presence of two motif each corresponding to HMG-CoA-binding and NADP(H)-binding. The Conserved Domain Database analysis predicted that CaHMGR belongs to Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Three-dimensional modeling confirmed the novelty of CaHMGR with a spatial structure similar to Homo sapiens (PDB id: 1IDQ8_A). Tissue Expression analysis indicates that CaHMGR is ubiquitous albeit differentially expressed among different tissues analysed, Strong expression was recorded in the nodes and leaves and low in the roots. The present investigation confirmed that nodes are vital to terpenoid synthesis in C. asiatica. Thus, the cloning of full length CDS, characterization and structure-function analysis of HMGR gene in Centella facilitate to understand the HMGR's functions and regulatory mechanisms involved in mevalonate pathway in C. asiatica at genetic level.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006903 Hydroxymethylglutaryl CoA Reductases Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID. HMG CoA Reductases,3-Hydroxy-3-methylglutaryl CoA Reductase,HMG CoA Reductase,Hydroxymethylglutaryl CoA Reductase,3 Hydroxy 3 methylglutaryl CoA Reductase,CoA Reductase, 3-Hydroxy-3-methylglutaryl,Reductase, 3-Hydroxy-3-methylglutaryl CoA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D018515 Plant Leaves Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed) Plant Leaf,Leaf, Plant,Leave, Plant,Leaves, Plant,Plant Leave

Related Publications

Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
November 2007, Journal of biochemistry and molecular biology,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
October 2020, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
August 2012, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
March 2001, Molecular genetics and genomics : MGG,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
March 2012, Gene,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
June 2006, Molecular biology reports,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
April 2013, Protoplasma,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
August 2000, Insect molecular biology,
Ratna Kalita, and Lochana Patar, and Ajit Kumar Shasany, and Mahendra K Modi, and Priyabrata Sen
April 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!