Comparative Study of the Effect of Glucosamine and Free Ammonium on 4-Methylimidazole Formation. 2015

Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
College of Light Industry and Food Sciences, South China University of Technology , Guangzhou 510640, China.

The effect of glucosamine analogues (glucosamine and acetylglucosamine) and free ammonium on the formation of 4-methylimidazole (4-MeI) was investigated in the caramel model reaction systems. Methylglyoxal (MGO) was detected after derivatization by high-performance liquid chromatography with a diode array detector (HPLC-DAD). 4-MeI in the Maillard reaction was tested using a high-performance cation exchange chromatography coupled with APCI-MS (HPCEC-MS). The levels of pyrazines tested by gas chromatography (GC) coupled with MS were applied to mark the condensation reaction between dicarbonyls and free ammonium. Results showed that the formation of 4-MeI and its precursor MGO was inhibited in glucosamine analogue model reaction systems. Besides, the results from pyrazines and brown intensity in glucosamine analogues model reaction systems indicated that glucosamine analogues mainly underwent the reaction of intra-intermolecular polymerization into melanoidins rather than the degradation reaction into MGO. Using glucosamine analogues to produce the caramel color with a low level of 4-MeI was applicable.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011765 Pyruvaldehyde An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals. Acetylformaldehyde,Methylglyoxal,Oxopropanal,Pyruvic Aldehyde,Aldehyde, Pyruvic
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D015416 Maillard Reaction A group of nonenzymatic reactions in which ALDEHYDES; KETONES; or reducing sugars react with the amino groups of AMINO ACIDS; PEPTIDES; PROTEINS; LIPIDS; or NUCLEIC ACIDS.The reaction with reducing sugars (glycation) results in formation of Schiff bases which undergo Amadori rearrangement and other reactions that result in the irreversible formation of ADVANCED GLYCATION END PRODUCTS (AGEs). Food browning, such as occurs when cooking with high heat (grilling, frying, roasting, etc.) is attributed to the Maillard reaction. Non-enzymatic glycation and subsequent formation of AGEs also occurs in vivo and is accelerated under hyperglycemic and inflammatory conditions, and OXIDATIVE STRESS. Browning Reaction,Food Browning,Fructation,Glucation,Glycation,Lipid Glycation,Non-Enzymatic Glycation,Non-Enzymatic Glycosylation,Nonenzymatic Protein Glycation,Protein Glycation,Ribation,Browning Reactions,Browning, Food,Glycation, Lipid,Glycation, Non-Enzymatic,Glycation, Protein,Glycosylation, Non-Enzymatic,Non Enzymatic Glycation,Non Enzymatic Glycosylation,Protein Glycation, Nonenzymatic,Reaction, Browning,Reaction, Maillard,Reactions, Browning
D064751 Ammonium Compounds Inorganic compounds that include a positively charged tetrahedral nitrogen (ammonium ion) as part of their structure. This class of compounds includes a broad variety of simple ammonium salts and derivatives. Ammonium

Related Publications

Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
December 2015, Journal of dairy science,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
October 2015, Food research international (Ottawa, Ont.),
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
January 2011, Journal of agricultural and food chemistry,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
June 2012, Journal de pharmacie de Belgique,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
January 2004, Pharmacology, biochemistry, and behavior,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
March 2013, Journal of agricultural and food chemistry,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
January 2016, Journal of food science,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
January 2000, Journal of clinical periodontology,
Pei Yu, and Xian-Bing Xu, and Shu-Juan Yu
May 2008, The journal of physical chemistry. A,
Copied contents to your clipboard!