Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens. 2015

Yogev Piestun, and Shlomo Yahav, and Orna Halevy
Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel Institute of Animal Sciences, ARO, The Volcani Center, Bet Dagan 50250, Israel yogev.p@mail.huji.ac.il.

Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch.

UI MeSH Term Description Entries
D010369 Pectoralis Muscles The pectoralis major and pectoralis minor muscles that make up the upper and fore part of the chest in front of the AXILLA. Pectoralis Major,Pectoralis Major Muscle,Pectoralis Minor,Pectoralis Minor Muscle,Pectoral Muscle,Muscle, Pectoral,Muscle, Pectoralis,Muscle, Pectoralis Major,Muscle, Pectoralis Minor,Muscles, Pectoralis Major,Pectoral Muscles,Pectoralis Major Muscles,Pectoralis Majors,Pectoralis Minor Muscles,Pectoralis Minors,Pectoralis Muscle
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular
D032446 Myoblasts Embryonic (precursor) cells of the myogenic lineage that develop from the MESODERM. They undergo proliferation, migrate to their various sites, and then differentiate into the appropriate form of myocytes (MYOCYTES, SKELETAL; MYOCYTES, CARDIAC; MYOCYTES, SMOOTH MUSCLE). Muscle Cells, Embryonic,Muscle Cells, Precursor,Embryonic Muscle Cell,Embryonic Muscle Cells,Muscle Cell, Embryonic,Muscle Cell, Precursor,Myoblast,Precursor Muscle Cell,Precursor Muscle Cells

Related Publications

Yogev Piestun, and Shlomo Yahav, and Orna Halevy
August 2016, Bioscience, biotechnology, and biochemistry,
Yogev Piestun, and Shlomo Yahav, and Orna Halevy
May 2008, Biochemical and biophysical research communications,
Yogev Piestun, and Shlomo Yahav, and Orna Halevy
January 2017, Advances in experimental medicine and biology,
Yogev Piestun, and Shlomo Yahav, and Orna Halevy
June 2016, Endocrinology,
Yogev Piestun, and Shlomo Yahav, and Orna Halevy
April 2019, Animal biotechnology,
Copied contents to your clipboard!