Inflammatory etiopathogenesis of systemic lupus erythematosus: an update. 2015

Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
Department of Internal Medicine 3, Institute for Clinical Immunology and Rheumatology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.

The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris.

UI MeSH Term Description Entries

Related Publications

Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
December 2007, La Revue de medecine interne,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
September 2000, International archives of allergy and immunology,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
September 2000, Immunology today,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
March 2017, The Medical journal of Australia,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
July 2011, Drug and therapeutics bulletin,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
January 1978, Pathobiology annual,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
June 1998, American family physician,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
March 2018, Current opinion in rheumatology,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
August 2023, Rheumatology international,
Malgorzata J Podolska, and Mona Hc Biermann, and Christian Maueröder, and Jonas Hahn, and Martin Herrmann
October 1973, Schweizerische medizinische Wochenschrift,
Copied contents to your clipboard!