TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. 2015

Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
Groupe de Recherche en Transplantation & Immunologie du Sang de Cordon (GRETISC), Centre Cancérologie Charles-Bruneau, Centre de recherche du CHU Sainte-Justine, Montréal, Québec, Canada.

Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
January 2016, PloS one,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
September 2005, Blood,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
May 2010, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
February 2007, Blood,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
October 2018, Arthritis research & therapy,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
March 2005, Experimental hematology,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
August 1986, American journal of hematology,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
October 2021, Blood,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
June 2012, Gut,
Martin Lelaidier, and Yildian Dìaz-Rodriguez, and Martine Cordeau, and Paulo Cordeiro, and Elie Haddad, and Sabine Herblot, and Michel Duval
July 2014, Haematologica,
Copied contents to your clipboard!