Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. 1989

E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
Department of Biochemistry, University of British Columbia, Vancouver, Canada.

Exposure of the nematode Caenorhabditis elegans to a heat shock results in the induction of a number of genes not normally expressed in the animals under normal growth conditions. Among these are a family of genes encoding 16 kDa heat shock proteins (hsp16s). The major hsp16 genes have been cloned and characterized, and found to reside at two clusters in the C. elegans genome. One cluster contains two distinct genes, hsp16-1 and hsp16-48, arranged in divergent orientations separated by only 348 base pairs (bp). An identical pair, duplicated and inverted with respect to the first pair, is located 415 bp away. This cluster, located on chromosome V, therefore contains four genes as two identical pairs within less than 4 kilobases of DNA, and the pairs form the arms of a large inverted repeat. A second pair of genes, hsp16-2 and hsp16-41, constitutes a second hsp16 locus with an organization very similar to that of the hsp16-1/48 locus, except that it is not duplicated. Comparisons of the derived amino acid sequences show that hsp16-1 and hsp16-2 form a closely related pair, as do hsp16-41 and hsp16-48. These hsps show extensive sequence identity with the small hsps of Drosophila, as well as with mammalian alpha-crystallins. The coding region of each gene is interrupted by a single intron of approximately 50 bp, in a position homologous to that of the first intron in mouse alpha-crystallin gene.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002107 Caenorhabditis A genus of small free-living nematodes. Two species, CAENORHABDITIS ELEGANS and C. briggsae are much used in studies of genetics, development, aging, muscle chemistry, and neuroanatomy. Caenorhabditides
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
August 2020, Genetics,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
December 1996, Current opinion in genetics & development,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
June 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
October 1997, The Journal of biological chemistry,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
January 1991, Postepy biochemii,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
January 2002, Progress in molecular and subcellular biology,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
January 2017, PloS one,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
April 1989, Journal of molecular biology,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
January 2003, Gene,
E P Candido, and D Jones, and D K Dixon, and R W Graham, and R H Russnak, and R J Kay
March 1983, Journal of molecular biology,
Copied contents to your clipboard!