MicroRNA-181a regulates epithelial-mesenchymal transition by targeting PTEN in drug-resistant lung adenocarcinoma cells. 2015

Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
Shandong University, Jinan, Shandong, P.R. China.

Chemoresistance is an inevitable occurrence in lung adenocarcinoma, which has been associated with decreased expression of the phosphatase and tensin homolog deleted on chromosome ten (PTEN). Therefore, it is important to identify novel molecular mechanisms to suppress chemoresistance in lung adenocarcinoma cells. Paclitaxel- and cisplatin-resistant A549 lung carcinoma cell derivatives were developed by long-term serial culture. The metastatic properties of the cells were assessed using wound-healing assays, migration assays, invasion assays, morphological examination, and western blot analysis/RT-PCR of genes associated with the epithelial-mesenchymal transition (EMT). To identify novel regulators of EMT in A549 cells, differentially expressed miRNAs in drug-resistant cells were identified by microarray analysis. The role of miR-181a was established by transfection with specific mimic and inhibitor followed by functional assays. Luciferase assays were performed to assess the ability of miR-181a to target the PTEN promoter, and regulation of PTEN expression by miR-181a was assessed by western blot analysis and RT-PCR. Paclitaxel- and cisplatin-resistant A549 cells acquired metastatic properties and EMT phenotype and had reduced PTEN expression as compared to sensitive cells. miR‑181a was identified as a differentially expressed miRNA in drug-resistant A549 cells, and miR-181a mimic and inhibitor were shown to affect migration, invasion, morphology and expression of EMT-associated genes. PTEN was identified as a direct target of miR-181a. Our findings demonstrate that miR-181a expression in lung adenocarcinoma is associated with EMT progression, potentially through targeting of PTEN. Regulation of miR-181a may provide a novel strategy for overcoming resistance to paclitaxel and cisplatin in lung adenocarcinoma.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077192 Adenocarcinoma of Lung A carcinoma originating in the lung and the most common lung cancer type in never-smokers. Malignant cells exhibit distinct features such as glandular epithelial, or tubular morphology. Mutations in KRAS, EGFR, BRAF, and ERBB2 genes are associated with this cancer. Lung Adenocarcinoma,Adenocarcinoma, Lung,Adenocarcinomas, Lung,Lung Adenocarcinomas
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051059 PTEN Phosphohydrolase A lipid phosphatase that contains a C2 DOMAIN and acts on phosphatidylinositol-3,4,5-trisphosphate to regulate various SIGNAL TRANSDUCTION PATHWAYS. It modulates CELL GROWTH PROCESSES; CELL MIGRATION; and APOPTOSIS. Mutations in PTEN are associated with COWDEN DISEASE and PROTEUS SYNDROME as well as NEOPLASTIC CELL TRANSFORMATION. MMAC1 Protein,Mutated In Multiple Advanced Cancers 1 Protein,PTEN Phosphatase,PTEN Protein,PTEN Protein Phosphatase,Phosphatase and Tensin Homologue on Chromosome Ten Protein,Phosphatase, PTEN,Phosphatase, PTEN Protein,Phosphohydrolase, PTEN,Protein Phosphatase, PTEN
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal

Related Publications

Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
November 2014, European journal of cancer (Oxford, England : 1990),
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
January 2016, Cancer cell international,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
September 2021, Neuroscience research,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
June 2016, Oncology reports,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
July 2016, Experimental cell research,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
January 2021, Journal of Cancer,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
November 2016, Molecular medicine reports,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
March 2022, Acta biochimica Polonica,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
May 2017, Oncotarget,
Haihui Li, and Pei Zhang, and Xiaojin Sun, and Yiming Sun, and Chao Shi, and Hao Liu, and Xuegang Liu
November 2017, European review for medical and pharmacological sciences,
Copied contents to your clipboard!