Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence. 2015

Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
Neuroscience Discovery Research, Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom (R.Z., P.M.P., E.S.); and Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China (J.X.R.) zwart_ruud@lilly.com.

The citric acid cycle intermediate citrate plays a crucial role in metabolic processes such as fatty acid synthesis, glucose metabolism, and β-oxidation. Citrate is imported from the circulation across the plasma membrane into liver cells mainly by the sodium-dependent citrate transporter (NaCT; SLC13A5). Deletion of NaCT from mice led to metabolic changes similar to caloric restriction; therefore, NaCT has been proposed as an attractive therapeutic target for the treatment of obesity and type 2 diabetes. In this study, we expressed mouse and human NaCT into Xenopus oocytes and examined some basic functional properties of those transporters. Interestingly, striking differences were found between mouse and human NaCT with respect to their sensitivities to citric acid cycle intermediates as substrates for these transporters. Mouse NaCT had at least 20- to 800-fold higher affinity for these intermediates than human NaCT. Mouse NaCT is fully active at physiologic plasma levels of citrate, but its human counterpart is not. Replacement of extracellular sodium by other monovalent cations revealed that human NaCT was markedly less dependent on extracellular sodium than mouse NaCT. The low sensitivity of human NaCT for citrate raises questions about the translatability of this target from the mouse to the human situation and raises doubts about the validity of this transporter as a therapeutic target for the treatment of metabolic diseases in humans.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
January 2017, PloS one,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
December 2015, Scientific reports,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
November 2020, The Biochemical journal,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
May 2016, Molecular medicine (Cambridge, Mass.),
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
September 2023, Communications biology,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
May 2019, ACS chemical biology,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
March 2021, Nature,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
February 1995, Biochemical Society transactions,
Ruud Zwart, and Polina M Peeva, and James X Rong, and Emanuele Sher
July 1997, DNA and cell biology,
Copied contents to your clipboard!