Distinct kinetic and mechanical properties govern mucin 16- and podocalyxin-mediated tumor cell adhesion to E- and L-selectin in shear flow. 2015

Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA.

Selectin-mediated tumor cell tethering to host cells, such as vascular endothelial cells, is a critical step in the process of cancer metastasis. We recently identified sialofucosylated mucin16 (MUC16) and podocalyxin (PODXL) as the major functional E- and L-selectin ligands expressed on the surface of metastatic pancreatic cancer cells. While the biophysics of leukocyte binding to selectins has been well studied, little is known about the mechanics of selectin-mediated adhesion pertinent to cancer metastasis. We thus sought to evaluate the critical parameters of selectin-mediated pancreatic tumor cell tethering and rolling. Using force spectroscopy, we characterized the binding interactions of MUC16 and PODXL to E- and L-selectin at the single-molecule level. To further analyze the response of these molecular interactions under physiologically relevant regimes, we used a microfluidic assay in conjunction with a mathematical model to study the biophysics of selectin-ligand binding as a function of fluid shear stress. We demonstrate that both MUC16 and PODXL-E-selectin-mediated interactions are mechanically stronger than like L-selectin interactions at the single-molecule level, and display a higher binding frequency at all contact times. The single-molecule kinetic and micromechanical properties of selectin-ligand bonds, along with the number of receptor-ligand bonds needed to initiate tethering, regulate the average velocity of ligand-coated microspheres rolling on selectin-coated surfaces in shear flow. Understanding the biophysics of selectin-ligand bonds and their responses to physiologically relevant shear stresses is vital for developing diagnostic assays and/or preventing the metastatic spread of tumor cells by interfering with selectin-mediated adhesion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012795 Sialoglycoproteins Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities. Polysialoglycoprotein,Sialoglycopeptide,Sialoglycopeptides,Sialoglycoprotein,Sialoprotein,Sialoproteins,Polysialoglycoproteins
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
May 2004, Journal of cell science,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
September 2004, The Journal of cell biology,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
August 2012, Integrative biology : quantitative biosciences from nano to macro,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
June 2008, The Journal of biological chemistry,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
October 1995, Cancer research,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
April 1998, Nature,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
January 2020, International journal of molecular sciences,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
November 2007, Journal of cell science,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
November 1999, Proceedings of the National Academy of Sciences of the United States of America,
Daniel J Shea, and Denis Wirtz, and Kathleen J Stebe, and Konstantinos Konstantopoulos
March 2010, Infection and immunity,
Copied contents to your clipboard!