Cellular and molecular effects of the mTOR inhibitor everolimus. 2015

Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
Hepatology, Department of Clinical Research, University of Berne, Switzerland University Clinic of Visceral Surgery and Medicine, Inselspital, Berne, Switzerland.

mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068338 Everolimus A derivative of sirolimus and an inhibitor of TOR SERINE-THREONINE KINASES. It is used to prevent GRAFT REJECTION in heart and kidney transplant patients by blocking cell proliferation signals. It is also an ANTINEOPLASTIC AGENT. Zortress,40-O-(2-hydroxyethyl)-rapamycin,Afinitor,Certican,RAD 001,RAD001,SDZ RAD,SDZ-RAD,001, RAD,RAD, SDZ
D000076222 Mechanistic Target of Rapamycin Complex 1 An evolutionarily conserved multiprotein complex that functions as a cellular energy sensor and regulator of protein synthesis for cell growth and proliferation. It consists of TOR SERINE-THREONINE KINASES; REGULATORY-ASSOCIATED PROTEIN OF MTOR (RAPTOR); MLST8 PROTEIN; and AKT1 substrate 1 protein. The activity of the complex is regulated by SIROLIMUS; INSULIN; GROWTH FACTORS; PHOSPHATIDIC ACIDS; some amino acids or amino acid derivatives, and OXIDATIVE STRESS. TOR Complex 1,TORC1,Target of Rapamycin Complex 1,mTORC1,mTORC1 Complex,Complex, mTORC1
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D046912 Multiprotein Complexes Macromolecular complexes formed from the association of defined protein subunits. Macromolecular Protein Complexes,Complexes, Macromolecular Protein,Complexes, Multiprotein,Protein Complexes, Macromolecular
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
September 2015, Transplant immunology,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
May 2011, Clinical cancer research : an official journal of the American Association for Cancer Research,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
January 2020, Human cell,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
September 2019, Journal of cell communication and signaling,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
August 2011, Expert review of anticancer therapy,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
June 2014, American journal of clinical oncology,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
December 2012, European journal of pharmacology,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
January 2017, Scientific reports,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
January 2007, Neuroendocrinology,
Uttara Saran, and Michelangelo Foti, and Jean-François Dufour
August 2010, Translational oncology,
Copied contents to your clipboard!