A stereoscopic scanning electron microscope study of pulmonary hypoplasia in chondrodystrophic mice. 1989

W B Hepworth, and R E Seegmiller
Department of Zoology, Brigham Young University, Provo, Utah 84602.

Pulmonary hypoplasia is a life threatening condition in newborns resulting from a generalized underdevelopment of the lungs. The lung disorder is usually secondary to conditions outside the lung such as thoracic volume reduction. The precise mechanism by which thoracic volume reduction prevents normal lung development and growth is unknown. As a model for human pulmonary hypoplasia associated with lethal skeletal dysplasia, a stereoscopic SEM study of chondrodystrophic (cho) fetal mouse lungs fixed by intratracheal instillation with 3% glutaraldehyde was conducted. In comparison with lungs of phenotypically normal littermates, the mutant's lungs appeared unaffected with respect to structure of major bronchiolar airways and in the morphology and amount of surfactant precursors (multilamellar bodies). The primary saccules within the mutant's lungs were significantly smaller and more numerous relative to those of normal littermates. These observations provide evidence that the lungs for this type of pulmonary hypoplasia are ultrastructurally normal with respect to upper airways, but that the primary saccules, or units of function in neonatal breathing in the rodent, are significantly smaller. This effect, however, does not appear to inhibit differentiation of type II pneumocytes or production of surfactant.

UI MeSH Term Description Entries
D008171 Lung Diseases Pathological processes involving any part of the LUNG. Pulmonary Diseases,Disease, Pulmonary,Diseases, Pulmonary,Pulmonary Disease,Disease, Lung,Diseases, Lung,Lung Disease
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005097 Exostoses, Multiple Hereditary Hereditary disorder transmitted by an autosomal dominant gene and characterized by multiple exostoses (multiple osteochondromas) near the ends of long bones. The genetic abnormality results in a defect in the osteoclastic activity at the metaphyseal ends of the bone during the remodeling process in childhood or early adolescence. The metaphyses develop benign, bony outgrowths often capped by cartilage. A small number undergo neoplastic transformation. Chondrodysplasia, Hereditary Deforming,Diaphyseal Aclasis,Exostoses, Familial,Exostoses, Hereditary Multiple,Exostoses, Multiple,Exostoses, Multiple Cartilaginous,Hereditary Multiple Exostoses,Osteochondromas, Multiple,Bessel-Hagen Disease,Exostoses, Multiple, Type I,Exostosis, Familial,Exostosis, Hereditary Multiple,Exostosis, Multiple,Exostosis, Multiple Cartilaginous,Familial Exostoses,Hereditary Multiple Exostosis,Multiple Cartilaginous Exostoses,Multiple Hereditary Exostoses,Multiple Osteochondromas,Multiple Osteochondromatosis,Aclases, Diaphyseal,Aclasis, Diaphyseal,Cartilaginous Exostoses, Multiple,Cartilaginous Exostosis, Multiple,Chondrodysplasias, Hereditary Deforming,Deforming Chondrodysplasia, Hereditary,Deforming Chondrodysplasias, Hereditary,Diaphyseal Aclases,Familial Exostosis,Hereditary Deforming Chondrodysplasia,Hereditary Deforming Chondrodysplasias,Hereditary Exostoses, Multiple,Multiple Cartilaginous Exostosis,Multiple Exostoses,Multiple Exostoses, Hereditary,Multiple Exostosis,Multiple Exostosis, Hereditary,Multiple Osteochondroma,Osteochondroma, Multiple
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W B Hepworth, and R E Seegmiller
June 1986, Teratology,
W B Hepworth, and R E Seegmiller
September 1972, Zeitschrift fur Laryngologie, Rhinologie, Otologie und ihre Grenzgebiete,
W B Hepworth, and R E Seegmiller
January 1982, Anatomy and embryology,
W B Hepworth, and R E Seegmiller
January 2014, BioMed research international,
W B Hepworth, and R E Seegmiller
February 1973, The Journal of parasitology,
W B Hepworth, and R E Seegmiller
October 1973, The Journal of parasitology,
W B Hepworth, and R E Seegmiller
January 1977, Journal of periodontology,
W B Hepworth, and R E Seegmiller
March 1976, Plastic and reconstructive surgery,
W B Hepworth, and R E Seegmiller
January 1971, Caries research,
W B Hepworth, and R E Seegmiller
October 1976, Journal of forensic sciences,
Copied contents to your clipboard!