Association with PAK2 Enables Functional Interactions of Lentiviral Nef Proteins with the Exocyst Complex. 2015

Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.

Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. OBJECTIVE Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D054311 nef Gene Products, Human Immunodeficiency Virus Proteins encoded by the NEF GENES of the HUMAN IMMUNODEFICIENCY VIRUS. nef Protein, Human Immunodeficiency Virus,HIV-3'-orf Protein,nef Protein, HIV,HIV 3' orf Protein,HIV nef Protein
D054462 p21-Activated Kinases A family of serine-threonine kinases that bind to and are activated by MONOMERIC GTP-BINDING PROTEINS such as RAC GTP-BINDING PROTEINS and CDC42 GTP-BINDING PROTEIN. They are intracellular signaling kinases that play a role the regulation of cytoskeletal organization. PAK Kinase,p21-Activated Kinase,Oligophrenin-3,PAK Kinases,PAK-1 Kinase,PAK-2 Kinase,PAK1 Kinase,PAK2 Kinase,PAK3 Kinase,PAK65,Serine-Threonine-Protein Kinase PAK 1,Serine-Threonine-Protein Kinase PAK 3,alpha p21-Activated Kinase,alpha-PAK,beta p21-Activated Kinase,beta-PAK,gamma-PAK,p21-Activated Kinase 1,p21-Activated Kinase 2,p21-Activated Kinase 3,p65(PAK),p65PAK Protein,Kinase, PAK,Kinase, p21-Activated,Kinases, PAK,Kinases, p21-Activated,Oligophrenin 3,PAK 1 Kinase,PAK 2 Kinase,Serine Threonine Protein Kinase PAK 1,Serine Threonine Protein Kinase PAK 3,alpha p21 Activated Kinase,beta p21 Activated Kinase,gamma PAK,p21 Activated Kinase,p21 Activated Kinase 1,p21 Activated Kinase 2,p21 Activated Kinase 3,p21 Activated Kinases,p21-Activated Kinase, beta
D057131 Immune Evasion Methods used by pathogenic organisms to evade a host's immune system. Evasion, Immune,Evasions, Immune,Immune Evasions
D033921 Vesicular Transport Proteins A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported. Transport Proteins, Vesicular

Related Publications

Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
April 2010, Journal of virology,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
October 2011, Current HIV research,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
April 2022, Journal of virology,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
February 2015, Journal of virology,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
November 2013, Retrovirology,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
November 2013, Plant signaling & behavior,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
September 2018, Current biology : CB,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
February 2000, Frontiers in bioscience : a journal and virtual library,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
January 1997, Research in virology,
Andrea Imle, and Libin Abraham, and Nikolaos Tsopoulidis, and Bernard Hoflack, and Kalle Saksela, and Oliver T Fackler
September 1994, The Journal of biological chemistry,
Copied contents to your clipboard!