Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips). 2015

Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.

The cardiac electrical disorder long QT syndrome (LQTS) pre-disposes affected individuals to ventricular arrhythmias and sudden death. Dysfunction of the human ether-a-go-go-related gene (hERG)-encoded rapidly activating delayed rectifier K(+) channel (IKr) is a major cause of LQTS. The expression of hERG channels is controlled by anterograde trafficking of newly synthesized channels to and retrograde degradation of existing channels from the plasma membrane. We have previously shown that the E3 ubiquitin (Ub) ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2) targets the PY motif of hERG channels to initiate channel degradation. Although both immature and mature hERG channels contain the PY motif, Nedd4-2 selectively mediates the degradation of mature hERG channels. In the present study, we demonstrate that Nedd4-2 is directed to specific cellular compartments by the Nedd4 family interacting proteins, Nedd4 family-interacting protein 1 (Ndfip1) and Ndfip2. Ndfip1 is primarily localized in the Golgi apparatus where it recruits Nedd4-2 to mediate the degradation of mature hERG proteins during channel trafficking to the plasma membrane. Although Ndfip2 directs Nedd4-2 to the Golgi apparatus, it also recruits Nedd4-2 to the multivesicular bodies (MVBs), which may impair MVB function and impede the degradation of mature hERG proteins mediated by Nedd4-2. These findings extend our understanding of hERG channel regulation and provide information which may be useful for the rescue of impaired hERG function in LQTS.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
April 2019, Molecular pharmacology,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
July 2002, The Journal of pharmacology and experimental therapeutics,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
November 2006, The Journal of pharmacology and experimental therapeutics,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
October 2000, Cardiovascular research,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
June 2011, Acta pharmacologica Sinica,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
July 2019, Journal of pharmacological sciences,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
August 2017, Molecular pharmacology,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
April 2007, Archives of pharmacal research,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
January 2019, The Journal of biological chemistry,
Yudi Kang, and Jun Guo, and Tonghua Yang, and Wentao Li, and Shetuan Zhang
September 1999, British journal of pharmacology,
Copied contents to your clipboard!