Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. 1989

B L Moss, and S M Schuetze, and L W Role
Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032.

Measurement of acetylcholine (ACh)-induced currents indicates that the sensitivity of embryonic sympathetic neurons increases following innervation in vivo and in vitro. We have used single-channel recording to assess the contribution of changes in ACh receptor properties to this increase. Early in development (before synaptogenesis), we detect three classes of ACh-activated channels that differ in their conductance and kinetics. Molecular studies indicating a variety of neuronal receptor subunit clones suggest a similar diversity. Later in development (after innervation), changes in functional properties include increases in conductance and apparent mean open time, the addition of a new conductance class, as well as apparent clustering and segregation of channel types. These changes in channel function are compatible with the developmental increase in ACh sensitivity.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous

Related Publications

B L Moss, and S M Schuetze, and L W Role
February 2007, Neuroscience,
B L Moss, and S M Schuetze, and L W Role
January 1987, Annual review of neuroscience,
B L Moss, and S M Schuetze, and L W Role
January 1998, Life sciences,
B L Moss, and S M Schuetze, and L W Role
August 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B L Moss, and S M Schuetze, and L W Role
November 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
B L Moss, and S M Schuetze, and L W Role
April 1988, Proceedings of the National Academy of Sciences of the United States of America,
B L Moss, and S M Schuetze, and L W Role
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B L Moss, and S M Schuetze, and L W Role
January 2013, International journal of physiology, pathophysiology and pharmacology,
B L Moss, and S M Schuetze, and L W Role
June 2001, Annals of the New York Academy of Sciences,
B L Moss, and S M Schuetze, and L W Role
July 2004, Journal of neurophysiology,
Copied contents to your clipboard!