Seasonal Preservation Success of the Marine Dinoflagellate Coral Symbiont, Symbiodinium sp. 2015

Mary Hagedorn, and Virginia L Carter
Department of Reproductive Sciences, Smithsonian Conservation Biology Institute- National Zoological Park, Front Royal, VA, United States of America; Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United States of America.

Coral reefs are some of the most diverse and productive ecosystems on the planet, but are threatened by global and local stressors, mandating the need for incorporating ex situ conservation practices. One approach that is highly protective is the development of genome resource banks that preserve the species and its genetic diversity. A critical component of the reef are the endosymbiotic algae, Symbiodinium sp., living within most coral that transfer energy-rich sugars to their hosts. Although Symbiodinium are maintained alive in culture collections around the world, the cryopreservation of these algae to prevent loss and genetic drift is not well-defined. This study examined the quantum yield physiology and freezing protocols that resulted in survival of Symbiodinium at 24 h post-thawing. Only the ultra-rapid procedure called vitrification resulted in success whereas conventional slow freezing protocols did not. We determined that success also depended on using a thin film of agar with embedded Symbiodinium on Cryotops, a process that yielded a post-thaw viability of >50% in extracted and vitrified Symbiodinium from Fungia scutaria, Pocillopora damicornis and Porites compressa. Additionally, there also was a seasonal influence on vitrification success as the best post-thaw survival of F. scutaria occurred in winter and spring compared to summer and fall (P < 0.05). These findings lay the foundation for developing a viable genome resource bank for the world's Symbiodinium that, in turn, will not only protect this critical element of coral functionality but serve as a resource for understanding the complexities of symbiosis, support selective breeding experiments to develop more thermally resilient strains of coral, and provide a 'gold-standard' genomics collection, allowing for full genomic sequencing of unique Symbiodinium strains.

UI MeSH Term Description Entries
D004141 Dinoflagellida Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm. Amphidinium,Dinoflagellata,Dinophyceae,Dinophycidae,Dinophyta,Dinophytes,Gambierdiscus toxicus,Gonyaulax,Gymnodinium,Peridinium,Pyrrhophyta,Pyrrophyta,Dinoflagellates
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012621 Seasons Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Seasonal Variation,Season,Seasonal Variations,Variation, Seasonal,Variations, Seasonal
D013559 Symbiosis The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other. Endosymbiosis,Commensalism,Mutualism
D017753 Ecosystem A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Ecosystems,Biome,Ecologic System,Ecologic Systems,Ecological System,Habitat,Niche, Ecological,System, Ecological,Systems, Ecological,Biomes,Ecological Niche,Ecological Systems,Habitats,System, Ecologic,Systems, Ecologic
D057894 Coral Reefs Marine ridges composed of living CORALS, coral skeletons, calcareous algae, and other organisms, mixed with minerals and organic matter. They are found most commonly in tropical waters and support other animal and plant life. Coral Reef,Reef, Coral,Reefs, Coral
D037421 Anthozoa A class in the phylum CNIDARIA, comprised mostly of corals and anemones. All members occur only as polyps; the medusa stage is completely absent. Coral,Corals

Related Publications

Mary Hagedorn, and Virginia L Carter
September 2005, Bioorganic & medicinal chemistry,
Mary Hagedorn, and Virginia L Carter
April 2004, Journal of the American Chemical Society,
Mary Hagedorn, and Virginia L Carter
March 2015, International journal of systematic and evolutionary microbiology,
Mary Hagedorn, and Virginia L Carter
February 2017, PLoS genetics,
Mary Hagedorn, and Virginia L Carter
April 2004, Bioscience, biotechnology, and biochemistry,
Mary Hagedorn, and Virginia L Carter
December 2019, Biopreservation and biobanking,
Copied contents to your clipboard!