EBV-Specific Immune Response: Early Research and Personal Reminiscences. 2015

D J Moss, and V P Lutzky
QIMR Berghofer Medical Research Institute, Brisbane, Australia. denis.moss@qimrberghofer.edu.au.

Early research on Epstein-Barr virus (EBV) developed from serological observations that were made soon after the discovery of the virus. Indeed, the definition of the humoral response to a variety of EBV proteins dominated the early literature and was instrumental in providing the key evidence for the association of the virus with infectious mononucleosis (IM), Burkitt's lymphoma (BL), and nasopharyngeal carcinoma (NPC). Each of these disease associations involved a distinct pattern of serological reactivity to the EBV membrane antigens (MA), early antigens (EA), and the EBV nuclear antigen (EBNA). When it became generally accepted that the marked lymphocytosis , which is a hallmark of acute IM, was dominated by T cells, considerable effort was directed toward untangling the specificities that might be associated with restricting the proliferation of newly infected B cells. Early evidence was divided between support for both EBV non-specific and/or HLA non-restricted components. However, all results needed to be reassessed in light of the observation that T cells died by apoptosis within hours of separation from fresh blood from acute IM patients. The observation that EBV-infected cultures from immune (but not non-immune) individuals began to die (termed regression) about 10 days post-seeding, provided the first evidence of a specific memory response which was apparently capable of controlling the small pool of latently infected B cells which all immune individuals possess. In this early era, CD8(+) T cells were thought to be the effector population responsible for this phenomenon, but later studies suggested a role for CD4(+) cells. This historical review includes reference to key early observations in regard to both the specific humoral and cellular responses to EBV infection from the time of the discovery of the virus until 1990. As well, we have included personal recollections in regard to the events surrounding the discovery of the memory T cell response since we believe they add a human dimension to a chapter focussed on early history.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000078329 Workforce The number of people working or available for work or service. Human Resources,Labor Supply,Manpower,Staffing,Womanpower,Human Resource,Labor Supplies,Manpowers,Staffings,Supply, Labor,Womanpowers,Workforces
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D014773 Virology The study of the structure, growth, function, genetics, and reproduction of viruses, and VIRUS DISEASES.
D049673 History, 20th Century Time period from 1901 through 2000 of the common era. 20th Century History,20th Cent. History (Medicine),20th Cent. History of Medicine,20th Cent. Medicine,Historical Events, 20th Century,History of Medicine, 20th Cent.,History, Twentieth Century,Medical History, 20th Cent.,Medicine, 20th Cent.,20th Cent. Histories (Medicine),20th Century Histories,Cent. Histories, 20th (Medicine),Cent. History, 20th (Medicine),Century Histories, 20th,Century Histories, Twentieth,Century History, 20th,Century History, Twentieth,Histories, 20th Cent. (Medicine),Histories, 20th Century,Histories, Twentieth Century,History, 20th Cent. (Medicine),Twentieth Century Histories,Twentieth Century History
D056724 Immunity, Humoral Antibody-mediated immune response. Humoral immunity is brought about by ANTIBODY FORMATION, resulting from TH2 CELLS activating B-LYMPHOCYTES, followed by COMPLEMENT ACTIVATION. Humoral Immune Response,Humoral Immune Responses,Humoral Immunity,Immune Response, Humoral,Immune Responses, Humoral,Response, Humoral Immune
D018414 CD8-Positive T-Lymphocytes A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes. Suppressor T-Lymphocytes, CD8-Positive,T8 Cells,T8 Lymphocytes,CD8-Positive Lymphocytes,Suppressor T-Cells, CD8-Positive,CD8 Positive Lymphocytes,CD8 Positive T Lymphocytes,CD8-Positive Lymphocyte,CD8-Positive Suppressor T-Cell,CD8-Positive Suppressor T-Cells,CD8-Positive Suppressor T-Lymphocyte,CD8-Positive Suppressor T-Lymphocytes,CD8-Positive T-Lymphocyte,Cell, T8,Cells, T8,Lymphocyte, CD8-Positive,Lymphocyte, T8,Lymphocytes, CD8-Positive,Lymphocytes, T8,Suppressor T Cells, CD8 Positive,Suppressor T Lymphocytes, CD8 Positive,Suppressor T-Cell, CD8-Positive,Suppressor T-Lymphocyte, CD8-Positive,T-Cell, CD8-Positive Suppressor,T-Cells, CD8-Positive Suppressor,T-Lymphocyte, CD8-Positive,T-Lymphocyte, CD8-Positive Suppressor,T-Lymphocytes, CD8-Positive,T-Lymphocytes, CD8-Positive Suppressor,T8 Cell,T8 Lymphocyte

Related Publications

D J Moss, and V P Lutzky
January 2023, Mass spectrometry reviews,
D J Moss, and V P Lutzky
March 1989, Psychiatric journal of the University of Ottawa : Revue de psychiatrie de l'Universite d'Ottawa,
D J Moss, and V P Lutzky
September 1995, Seminars in nephrology,
D J Moss, and V P Lutzky
June 2002, Hepatology (Baltimore, Md.),
D J Moss, and V P Lutzky
January 1963, Journal of the history of medicine and allied sciences,
D J Moss, and V P Lutzky
June 1969, Acta physiologica et pharmacologica Neerlandica,
D J Moss, and V P Lutzky
October 2020, Journal of the American Psychoanalytic Association,
D J Moss, and V P Lutzky
June 1912, Canadian Medical Association journal,
D J Moss, and V P Lutzky
June 1979, Acta tropica,
Copied contents to your clipboard!