Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production. 2016

Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.

Many microorganisms could naturally produce (R, R)-2,3-butanediol ((R, R)-2,3-BD), which has unique applications due to its special chiral group and spatial configuration. But the low enantio-purity of the product hindered the development of large-scale production. In this work, a synthetic constitutive metabolic pathway for enantiomerically pure (R, R)-2,3-BD biosynthesis was constructed in Escherichia coli with vector pUC6S, which does not contain any lac sequences. The expression of this artificial constructed gene cluster was optimized by using two different strength of promoters (AlperPLTet01 (P01) and AlperBB (PBB)). The strength of P01 is twice stronger than PBB. The fermentation results suggested that the yield of (R, R)-2,3-BD was higher when using the stronger promoter. Compared with the wild type, the recombinant strain E. coli YJ2 produced a small amount of acetic acid and showed higher glucose consumption rate and higher cell density, which indicated a protection against acetic acid inhibition. In order to further increase the (R, R)-2,3-BD production by reducing the accumulation of its precursor acetoin, the synthetic operon was reconstructed by adding the strong promoter P01 in front of the gene ydjL coding for the enzyme of (R, R)-2,3-BD dehydrogenase which catalyzes the conversion of acetoin to (R, R)-2,3-BD. The engineered strain E. coli YJ3 showed a 20 % decrease in acetoin production compared with that of E. coli YJ2. After optimization the fermentation conditions, 30.5 g/L of (R, R)-2,3-BD and 3.2 g/L of acetoin were produced from 80 g/L of glucose within 18 h, with an enantio-purity over 99 %.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002072 Butylene Glycols 4-carbon straight chain aliphatic hydrocarbons substituted with two hydroxyl groups. The hydroxyl groups cannot be on the same carbon atom. Butanediols,Dihydroxybutanes,Glycols, Butylene
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000093 Acetoin A product of fermentation. It is a component of the butanediol cycle in microorganisms. In mammals it is oxidized to carbon dioxide. Acetylmethylcarbinol,3-hydroxy-2-butanone,3H-2B butanone
D053858 Metabolic Networks and Pathways Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites. Metabolic Networks,Metabolic Pathways,Metabolic Network,Metabolic Pathway,Network, Metabolic,Networks, Metabolic,Pathway, Metabolic,Pathways, Metabolic
D058615 Synthetic Biology A field of biological research combining engineering in the formulation, design, and building (synthesis) of novel biological structures, functions, and systems. Biologies, Synthetic,Biology, Synthetic,Synthetic Biologies

Related Publications

Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
January 2016, Applied microbiology and biotechnology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
September 2017, Journal of industrial microbiology & biotechnology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
January 2004, Letters in applied microbiology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
July 2018, Metabolic engineering,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
August 2021, ACS synthetic biology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
December 2017, Journal of industrial microbiology & biotechnology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
November 2012, Journal of industrial microbiology & biotechnology,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
May 2014, Metabolic engineering,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
January 2014, Biotechnology and applied biochemistry,
Ying-Jia Tong, and Xiao-Jun Ji, and Meng-Qiu Shen, and Lu-Gang Liu, and Zhi-Kui Nie, and He Huang
May 2013, Journal of bioscience and bioengineering,
Copied contents to your clipboard!