Tebuconazole disrupts steroidogenesis in Xenopus laevis. 2015

Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address: rikkesemail@gmail.com.

A 27-day controlled exposure study of adult male African clawed frogs (Xenopus laevis) was conducted to examine the mechanism by which tebuconazole may disrupt steroidogenesis. The fungicide was measured by LC-MS/MS in tank water and in target tissues (adipose, kidney, liver, and brain), and we observed tissue-specific bioconcentration with BCF up to 238. Up to 10 different steroid hormones were quantified in gonads using LC-MS/MS and in plasma using GC-MS/MS and a radioimmunoassay was performed for further measurement of androgens. In order to assess whether effects increased with exposure or animals adapted to the xenobiotic, blood samples were collected 12 days into the study and at termination (day 27). After 12 days of exposure to 100 and 500μgL(-1) tebuconazole, plasma levels of testosterone (T) and dihydrotestosterone (DHT) were increased, while plasma 17β-estradiol (E2) concentrations were greatly reduced. Exposure to 0.1μgL(-1), on the other hand, resulted in decreased levels of T and DHT, with no effects observed for E2. After 27 days of exposure, effects were no longer observed in circulating androgen levels while the suppressive effect on E2 persisted in the two high-exposure groups (100 and 500μgL(-1)). Furthermore, tebuconazole increased gonadal concentrations of T and DHT as well as expression of the enzyme CYP17 (500μgL(-1), 27 days). These results suggest that tebuconazole exposure may supress the action of CYP17 at the lowest exposure (0.1μgL(-1)), while CYP19 suppression dominates at higher exposure concentrations (increased androgens and decreased E2). Increased androgen levels in plasma half-way into the study and in gonads at termination may thus be explained by compensatory mechanisms, mediated through increased enzymatic expression, as prolonged exposure had no effect on circulating androgen levels.

UI MeSH Term Description Entries
D008297 Male Males
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005659 Fungicides, Industrial Chemicals that kill or inhibit the growth of fungi in agricultural applications, on wood, plastics, or other materials, in swimming pools, etc. Industrial Fungicides
D006066 Gonads The gamete-producing glands, OVARY or TESTIS. Gonad
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19
D013196 Dihydrotestosterone A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. 5 alpha-Dihydrotestosterone,Androstanolone,Stanolone,17 beta-Hydroxy-5 beta-Androstan-3-One,17beta-Hydroxy-5alpha-Androstan-3-One,5 beta-Dihydrotestosterone,5-alpha Dihydrotestosterone,5-alpha-DHT,Anaprotin,Andractim,Dihydroepitestosterone,Gelovit,17 beta Hydroxy 5 beta Androstan 3 One,17beta Hydroxy 5alpha Androstan 3 One,5 alpha DHT,5 alpha Dihydrotestosterone,5 beta Dihydrotestosterone,Dihydrotestosterone, 5-alpha,beta-Hydroxy-5 beta-Androstan-3-One, 17
D013254 Steroid 17-alpha-Hydroxylase A microsomal cytochrome P450 enzyme that catalyzes the 17-alpha-hydroxylation of progesterone or pregnenolone and subsequent cleavage of the residual two carbons at C17 in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP17 gene, generates precursors for glucocorticoid, androgen, and estrogen synthesis. Defects in CYP17 gene cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL) and abnormal sexual differentiation. 17 alpha-Hydroxylase,17,20-Lyase,CYP17,Cytochrome P-450(17 alpha),P450(c17),Steroid 17 alpha-Monooxygenase,Steroid 17-Hydroxylase,Steroid 17-Monooxygenase,17 alpha-Hydroxylase Cytochrome P-450,17 alpha-Hydroxyprogesterone Aldolase,17,20-Desmolase,Cytochrome P-450(17-alpha),Cytochrome P450(17 alpha),Hydroxyprogesterone Aldolase,Steroid 17 alpha-Hydroxylase,Steroid-17-Hydroxylase,17 alpha Hydroxylase,17 alpha Hydroxylase Cytochrome P 450,17 alpha Hydroxyprogesterone Aldolase,17 alpha-Hydroxylase, Steroid,17 alpha-Monooxygenase, Steroid,17,20 Desmolase,17,20 Lyase,17-Hydroxylase, Steroid,17-Monooxygenase, Steroid,17-alpha-Hydroxylase, Steroid,Aldolase, 17 alpha-Hydroxyprogesterone,Aldolase, Hydroxyprogesterone,Steroid 17 Hydroxylase,Steroid 17 Monooxygenase,Steroid 17 alpha Hydroxylase,Steroid 17 alpha Monooxygenase,alpha-Hydroxyprogesterone Aldolase, 17,alpha-Monooxygenase, Steroid 17
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
November 1990, General and comparative endocrinology,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
February 2018, Environmental science & technology,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
December 1966, Acta embryologiae et morphologiae experimentalis,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
July 1949, Nordisk medicin,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
June 1987, The Journal of experimental zoology,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
August 2010, Journal of applied toxicology : JAT,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
February 2015, Aquatic toxicology (Amsterdam, Netherlands),
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
March 1958, Nature,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
January 1994, Trends in cardiovascular medicine,
Rikke Poulsen, and Xuan Luong, and Martin Hansen, and Bjarne Styrishave, and Tyrone Hayes
January 2003, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!