Whole body and regional fuel metabolism during early postexercise recovery. 1989

J T Devlin, and J Barlow, and E S Horton
Metabolism-Endocrinology Unit, University of Vermont College of Medicine, Burlington 05405.

We studied whole body and regional fuel metabolism 1-4 h after cycle exercise [70% maximum O2 consumption (VO2max)], using the insulin clamp technique (40 mU.M-2.min-1) with indirect calorimetry. Substrate fluxes were determined in nonexercised (forearm) muscle tissues. Total glucose utilization was not increased by exercise, either in the preinsulin or insulin-stimulated state. Glucose oxidation tended to decrease, and lipid oxidation was increased after exercise. Forearm glucose uptake (FGU) was increased 5 times by insulin in the resting state, due largely to increased fractional extraction (P less than 0.05). After exercise, FGU was not increased by insulin. Forearm alanine and lactate release was doubled 2 h after exercise. Branched-chain amino acid (BCAA) concentrations were increasing after exercise (P less than 0.01) at a time when forearm muscle was taking up these amino acids. Insulin infusion suppressed the elevated release of gluconeogenic precursors from the forearm and suppressed the elevated concentrations of BCAAs, free fatty acids, and glycerol present after exercise. In summary, basal and insulin-stimulated glucose utilization is not augmented by prior high-intensity exercise, partly because nonexercised muscle is insulin resistant. Insulin infusion attenuates the altered metabolic milieu seen during early recovery.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002153 Calorimetry, Indirect Calculation of the energy expenditure in the form of heat production of the whole body or individual organs based on respiratory gas exchange. Calorimetry, Respiration,Calorimetries, Indirect,Calorimetries, Respiration,Indirect Calorimetries,Indirect Calorimetry,Respiration Calorimetries,Respiration Calorimetry

Related Publications

J T Devlin, and J Barlow, and E S Horton
May 1989, The American journal of clinical nutrition,
J T Devlin, and J Barlow, and E S Horton
July 1985, The American journal of clinical nutrition,
J T Devlin, and J Barlow, and E S Horton
December 2018, The Journal of sports medicine and physical fitness,
J T Devlin, and J Barlow, and E S Horton
January 2018, International journal of sport nutrition and exercise metabolism,
J T Devlin, and J Barlow, and E S Horton
February 1996, Scandinavian journal of medicine & science in sports,
J T Devlin, and J Barlow, and E S Horton
September 1978, The American journal of physiology,
J T Devlin, and J Barlow, and E S Horton
April 2018, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
J T Devlin, and J Barlow, and E S Horton
March 1995, The Proceedings of the Nutrition Society,
J T Devlin, and J Barlow, and E S Horton
November 2007, The Journal of physiology,
J T Devlin, and J Barlow, and E S Horton
October 1994, Diabetes/metabolism reviews,
Copied contents to your clipboard!