Redirection of prostaglandin endoperoxide metabolism at the platelet-vascular interface in man. 1989

J Nowak, and G A FitzGerald
Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Prostacyclin (PGI2) is an inhibitor of platelet function in vitro. We tested the hypothesis that PGI2 is formed in biologically active concentrations at the platelet-vascular interface in man and can be pharmacologically modulated to enhance its inhibitory properties. This became feasible when we developed a microquantitative technique that permits the measurement of eicosanoids in successive 40-microliters aliquots of whole blood emerging from a bleeding time wound. In 13 healthy volunteers the rate of production of thromboxane B2 (TXB2) gradually increased, reaching a maximum of 421 +/- 90 (mean +/- SEM) fg/microliters per s at 300 +/- 20 s. The hydration product of PGI2, 6-keto-PGF1 alpha, rose earlier and to a lesser degree, reaching a peak (68 +/- 34 fg/microliters per s) at 168 +/- 23 s. The generation of prostaglandins PGE2 and D2 resembled that of PGI2. Whereas the threshold concentration of PGI2 for an effect on platelets in vitro is approximately 30 fg/microliters, only less than 3 fg/microliters circulates under physiological conditions. By contrast, peak concentrations of 6-keto-PGF1 alpha obtained locally after vascular damage averaged 305 fg/microliters. Pharmacological regulation of PG endoperoxide metabolism at the platelet-vascular interface was demonstrated by administration of a TX synthase inhibitor. The rate of production of PGI2, PGE2, and PGD2 increased coincident with inhibition of TXA, as reflected by three indices; the concentration of TXB2 in bleeding time blood and serum, and excretion of the urinary metabolite, 2,3-dinor-TXB2. These studies indicate that PGI2 is formed locally in biologically effective concentrations at the site of vessel injury and provide direct evidence in support of transcellular metabolism of PG endoperoxides in man.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D011449 Prostaglandin Endoperoxides Precursors in the biosynthesis of prostaglandins and thromboxanes from arachidonic acid. They are physiologically active compounds, having effect on vascular and airway smooth muscles, platelet aggregation, etc. Endoperoxides, Prostaglandin
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001760 Bleeding Time Duration of blood flow after skin puncture. This test is used as a measure of capillary and platelet function. Aspirin Tolerance Test,Bleeding Time, Template,Duke Method,Ivy Method,Template Bleeding Time,Aspirin Tolerance Tests,Bleeding Times,Bleeding Times, Template,Method, Duke,Method, Ivy,Template Bleeding Times,Test, Aspirin Tolerance,Tests, Aspirin Tolerance,Time, Bleeding,Time, Template Bleeding,Times, Bleeding,Times, Template Bleeding,Tolerance Test, Aspirin,Tolerance Tests, Aspirin
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Nowak, and G A FitzGerald
January 1977, Prostaglandins,
J Nowak, and G A FitzGerald
January 1983, Drug metabolism reviews,
J Nowak, and G A FitzGerald
August 2022, Internal and emergency medicine,
J Nowak, and G A FitzGerald
February 1987, Prostaglandins,
J Nowak, and G A FitzGerald
January 1980, Advances in prostaglandin and thromboxane research,
J Nowak, and G A FitzGerald
August 1980, Biochimica et biophysica acta,
J Nowak, and G A FitzGerald
March 2008, Arteriosclerosis, thrombosis, and vascular biology,
J Nowak, and G A FitzGerald
March 2008, Arteriosclerosis, thrombosis, and vascular biology,
J Nowak, and G A FitzGerald
March 2008, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!