Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression. 2015

Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain.

BACKGROUND The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. METHODS Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2'-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. RESULTS Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. CONCLUSIONS These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003606 Dacarbazine An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) DTIC,5-(3,3-Dimethyl-1-triazeno)imidazole-4-carboxamide,Biocarbazine,DIC,DTIC-Dome,Decarbazine,Deticene,Dimethyl Imidazole Carboxamide,Dimethyl Triazeno Imidazole Carboxamide,ICDT,NSC-45388,Carboxamide, Dimethyl Imidazole,DTIC Dome,DTICDome,Imidazole Carboxamide, Dimethyl,NSC 45388,NSC45388
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006147 Guanine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071916 AC133 Antigen A member of the prominin family, AC133 Antigen is a 5-transmembrane antigen occurring as several isoforms produced by alternative splicing which are processed into mature forms. In humans, it is expressed as a subset of CD34 (bright) human hematopoietic stem cells and CD34 positive leukemias. Functionally, it is associated with roles in cell differentiation, proliferation, and apoptosis. Specifically, it regulates the organization of apical plasma membrane in epithelial cells, disk morphogenesis during early retinal development, MAPK and Akt signaling pathways, and in cholesterol metabolism. AC133-1 Antigen,AC133-2 Antigen,AC141 Antigen,CD133 Antigen,Fudenine,PROML1,Prominin,Prominin-1,Prominin-Like PROML1,AC133 1 Antigen,AC133 2 Antigen,Antigen, AC133,Antigen, AC133-1,Antigen, AC133-2,Antigen, AC141,Antigen, CD133,Prominin 1,Prominin Like PROML1
D000077204 Temozolomide A dacarbazine derivative that is used as an alkylating antineoplastic agent for the treatment of MALIGNANT GLIOMA and MALIGNANT MELANOMA. 8-Carbamoyl-3-methylimidazo(5,1-d)-1,2,3,5-tetrazin-4(3H)-one,CCRG 81045,CCRG-81045,M&B 39831,M&B-39831,Methazolastone,NSC 362856,NSC-362856,TMZ-Bioshuttle,TMZA-HE,Temodal,Temodar,Temozolomide Hexyl Ester,CCRG81045,M&B39831,NSC362856,TMZ Bioshuttle
D000077209 Decitabine An azacitidine derivative and antineoplastic antimetabolite. It inhibits DNA methyltransferase to re-activate silent genes, limiting METASTASIS and NEOPLASM DRUG RESISTANCE. Decitabine is used in the treatment of MYELODISPLASTIC SYNDROMES, and ACUTE MYELOID LEUKEMIA. 2'-Deoxy-5-azacytidine,5-Aza-2'-deoxycytidine,5-AzadC,5-Azadeoxycytidine,5-Deoxyazacytidine,5AzadC,AzadC Compound,Dacogen,Decitabine Mesylate,NSC 127716,NSC-127716,2' Deoxy 5 azacytidine,5 Aza 2' deoxycytidine,5 Azadeoxycytidine,5 Deoxyazacytidine,Compound, AzadC,Mesylate, Decitabine,NSC127716

Related Publications

Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
October 2013, Investigational new drugs,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
June 2012, Molecular cancer therapeutics,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
July 2018, Nature communications,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
June 2009, Neuro-oncology,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
November 2007, International journal of radiation oncology, biology, physics,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
November 2020, Oncology reports,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
December 2018, Molecular cancer therapeutics,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
December 2018, Cancer gene therapy,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
January 2020, Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology,
Gloria Perazzoli, and Jose Prados, and Raul Ortiz, and Octavio Caba, and Laura Cabeza, and Maria Berdasco, and Beatriz Gónzalez, and Consolación Melguizo
February 2014, International journal of oncology,
Copied contents to your clipboard!