Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines. 1989

C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
Division of Hematology and Pediatric Oncology, Children's Hospital, Boston, Massachusetts.

While the cellular sources for granulocyte-macrophage colony-stimulating factor (GM-CSF) are known to be widely distributed among several cell types, interleukin-3 (IL-3) gene expression has been demonstrated in only certain T-cell clones and in blood mononuclear cells stimulated with phytohemagglutinin (PHA) and phorbol-myristate-acetate (PMA). To determine which blood cells were responsible for this expression, we fractionated PHA/PMA-stimulated mononuclear cells and identified T lymphocytes as the source of IL-3 mRNA. Low-level IL-3 expression was detected as well in several stimulated human T-cell lines. Hematopoietic stromal cells such as fibroblasts and endothelial cells could not be induced to express IL-3 mRNA. The kinetics of IL-3 mRNA induction in mononuclear cells and lymphocytes stimulated with PHA/PMA or anti-CD3 monoclonal antibody (MoAb) and interleukin-1 (IL-1) were similar to those observed for GM-CSF expression.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor

Related Publications

C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
January 1989, Growth factors (Chur, Switzerland),
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
January 1987, Journal of immunology (Baltimore, Md. : 1950),
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
December 1982, Journal of immunology (Baltimore, Md. : 1950),
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
November 1990, American journal of respiratory cell and molecular biology,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
February 1994, Immunology letters,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
January 1987, Progress in clinical and biological research,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
September 2003, Cell death and differentiation,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
July 1989, Blood,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
December 1990, Proceedings of the National Academy of Sciences of the United States of America,
C M Niemeyer, and C A Sieff, and B Mathey-Prevot, and J Z Wimperis, and B E Bierer, and S C Clark, and D G Nathan
February 1986, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!