Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. 1989

L T Baxter, and R K Jain
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890.

A general theoretical framework for transvascular exchange and extravascular transport of fluid and macromolecules in tumors is developed. The resulting equations are applied to the most simple case of a homogeneous, alymphatic tumor, with no extravascular binding. Numerical simulations show that in a uniformly perfused tumor the elevated interstitial pressure is a major cause for heterogeneous distribution of nonbinding macromolecules, because it (i) reduces the driving force for extravasation of fluid and macromolecules in tumors, (ii) results in nonuniform filtration of fluid and macromolecules from blood vessels, and (iii) leads to experimentally verifiable, radially outward convection which opposes the inward diffusion. The models are used to predict the interstitial pressure, interstitial fluid velocity, and concentration profiles as a function of radial position and tumor size. The model predictions agree with the following experimental data: (i) the interstitial pressure in a tumor is lowest at the periphery of the tumor and increases towards the center; (ii) the radially outward fluid velocity predicted by the fluid transport model is of the same order of magnitude as that measured in tissue-isolated tumors; and (iii) the concentration of macromolecules is higher in the periphery than in the center of tumors at short times postinjection; however, at later times the peripheral concentration is less than the concentration in the center. This work shows that in addition to the heterogeneous distribution of blood supply, hindered interstitial transport, and rapid extravascular binding of macromolecules (e.g., monoclonal antibodies), the elevated interstitial pressure plays an important role in determining the penetration of macromolecules into tumors. If the genetically engineered macromolecules are to fulfill their clinical promise, methods must be developed to overcome these physiological barriers in tumors.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

L T Baxter, and R K Jain
January 1986, Annals of the New York Academy of Sciences,
L T Baxter, and R K Jain
December 2012, Current drug discovery technologies,
L T Baxter, and R K Jain
December 2008, Future oncology (London, England),
L T Baxter, and R K Jain
December 1999, Medical hypotheses,
L T Baxter, and R K Jain
September 1997, Microvascular research,
Copied contents to your clipboard!