The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. 2015

Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

This study was conducted to examine the effects of fructooligosaccharide (FOS) supplementation on growth performance, lymphoid organ weight, intestinal morphology, and immunological status in broilers (n=180) challenged with Salmonella Enteritidis lipopolysaccharides (LPS). Birds were randomly assigned into a 3×2 factorial arrangement that included 1) 3 dietary treatments from d one to 21: positive control (PC), wheat-corn-soybean meal based diet contained antibiotics (virginiamycin and monensin); negative control (NC), as PC without antibiotics; and NC+FOS, as NC supplemented with 0.5% FOS, and 2) 2 intraperitoneal injections: 2 mg/kg Salmonella Enteritidis LPS or sterile phosphate buffered saline (PBS) on d 21. Growth performance and relative lymphoid organ weight were not significantly different among the treatments. Villus height, crypt depth, and total mucosa thickness were significantly increased (P<0.05) in the ileum of broiler chickens fed NC+FOS when compared to PC and NC. Birds in NC+FOS treatment had reduced heterophil but increased monocyte count when compared to NC (P<0.05). Significant diet×challenge interaction was observed on natural IgY levels (P<0.0001), and a significant dietary effect was observed on specific IgY levels in chickens fed NC+FOS (P=0.003). Supplementation of FOS also increased the expression of interleukin (IL)-1ß, -10, and interferon (IFN)-γ mRNA in the ileum of the birds. In summary, Salmonella Enteritidis LPS challenge established significant differences in the immune responses in broiler chickens. FOS supplementation increased ileal mucosa thickness and elevated the expressions of certain cytokine genes. It also led to the alteration of leukocyte compositions and serum IgY levels in response to LPS challenge, suggesting FOS supplementation may be effective to induce protective outcomes in gut health and immunity of broiler chickens.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011201 Poultry Diseases Diseases of birds which are raised as a source of meat or eggs for human consumption and are usually found in barnyards, hatcheries, etc. The concept is differentiated from BIRD DISEASES which is for diseases of birds not considered poultry and usually found in zoos, parks, and the wild. Disease, Poultry,Diseases, Poultry,Poultry Disease
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional

Related Publications

Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
January 2019, Frontiers in veterinary science,
Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
December 2020, Veterinary and animal science,
Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
September 2019, Animal nutrition (Zhongguo xu mu shou yi xue hui),
Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
October 2018, Poultry science,
Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
January 2015, Journal of animal science,
Yue Shang, and Alemu Regassa, and Ji Hyuk Kim, and Woo Kyun Kim
April 2017, Journal of animal physiology and animal nutrition,
Copied contents to your clipboard!