Neural population encoding and decoding of sound source location across sound level in the rabbit inferior colliculus. 2016

Mitchell L Day, and Bertrand Delgutte
Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts; and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts daym1@ohio.edu.

At lower levels of sensory processing, the representation of a stimulus feature in the response of a neural population can vary in complex ways across different stimulus intensities, potentially changing the amount of feature-relevant information in the response. How higher-level neural circuits could implement feature decoding computations that compensate for these intensity-dependent variations remains unclear. Here we focused on neurons in the inferior colliculus (IC) of unanesthetized rabbits, whose firing rates are sensitive to both the azimuthal position of a sound source and its sound level. We found that the azimuth tuning curves of an IC neuron at different sound levels tend to be linear transformations of each other. These transformations could either increase or decrease the mutual information between source azimuth and spike count with increasing level for individual neurons, yet population azimuthal information remained constant across the absolute sound levels tested (35, 50, and 65 dB SPL), as inferred from the performance of a maximum-likelihood neural population decoder. We harnessed evidence of level-dependent linear transformations to reduce the number of free parameters in the creation of an accurate cross-level population decoder of azimuth. Interestingly, this decoder predicts monotonic azimuth tuning curves, broadly sensitive to contralateral azimuths, in neurons at higher levels in the auditory pathway.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013017 Sound Localization Ability to determine the specific location of a sound source. Auditory Localization,Auditory Localizations,Localization, Auditory,Localization, Sound,Localizations, Auditory,Localizations, Sound,Sound Localizations

Related Publications

Mitchell L Day, and Bertrand Delgutte
November 2011, Journal of neurophysiology,
Mitchell L Day, and Bertrand Delgutte
September 1988, Hearing research,
Mitchell L Day, and Bertrand Delgutte
April 1987, Journal of neurophysiology,
Mitchell L Day, and Bertrand Delgutte
May 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Mitchell L Day, and Bertrand Delgutte
December 1990, Hearing research,
Mitchell L Day, and Bertrand Delgutte
August 2000, Acta oto-laryngologica,
Mitchell L Day, and Bertrand Delgutte
July 1984, Journal of neurophysiology,
Mitchell L Day, and Bertrand Delgutte
May 1994, Science (New York, N.Y.),
Copied contents to your clipboard!