On the description of neuronal output properties using spike train data. 1989

F Awiszus
Abteilung Neurophysiologic, Medizinische Hochschule Hannover, Federal Republic of Germany.

Neuronal output properties for input stimuli that evoke a deterministic response can be efficiently described by the interspike-interval function (Awiszus 1988a). It is shown in this paper that there are stimuli for which both the Hodgkin-Huxley (HH-) model of an action potential encoding membrane (Hodgkin and Huxley 1952) and a muscle spindle primary afferent generate responses which violate the conditions for a deterministic one. Instead of being stochastic these responses follow systematic rules, namely those for a semi-deterministic response, a class of neuronal responses established in this paper that includes the deterministic one. Instead of being stochastic these output properties are best described by the interspike-interval curve. A phase plane analysis of the internal properties of the HH-model underlying such responses shows that it is reasonable to assume that responses of an HH-model and consequently, all neurons for which an HH-model is a valid description of the action potential encoding process, always fall into the class of semi-deterministic responses, regardless of the input current density time course as long as it is large enough to maintain spike activity. Consequences of this assumption for the analysis of neuronal output properties are discussed with respect to output measures and efficient input stimuli.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F Awiszus
May 1980, IEEE transactions on bio-medical engineering,
F Awiszus
July 1976, Computers in biology and medicine,
F Awiszus
October 1997, Biological cybernetics,
F Awiszus
November 2005, Journal of neuroscience methods,
F Awiszus
September 1979, Biological cybernetics,
Copied contents to your clipboard!