Evaluation of the toxicology and pharmacokinetics of recombinant factor VIII Fc fusion protein in animals. 2015

Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
Biogen, Cambridge, MA, USA. Electronic address: jennifer.dumont@biogen.com.

BACKGROUND Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a novel recombinant factor VIII with a prolonged half-life, developed for the treatment of hemophilia A. Studies that evaluated the toxicological effects of rFVIIIFc in 2 pharmacologically relevant species, cynomolgus monkeys and Sprague Dawley rats, are reported here. METHODS In repeat-dose toxicology studies, rats and monkeys received 0, 50, 250, or 1000 IU/kg rFVIIIFc every other day for 4 weeks. In a high-dose tolerance study, monkeys received 1 rFVIIIFc dose of 3000, 10,000, or 20,000 IU/kg. Evaluations included in-life observations, laboratory and post-mortem evaluations, pharmacokinetics, and local tolerance. Allometric scaling, using data from 4 animal species and humans, was used to evaluate the relationship between animal and human pharmacokinetics. RESULTS rFVIIIFc was well tolerated with no adverse toxicological findings directly attributable to rFVIIIFc. As expected, antibodies to this fully human protein developed in rats and monkeys in a time-dependent fashion following repeated dosing, leading to increased clearance in both species. There were no local reactions (infusion site) or evidence of thrombosis at high doses in rats and monkeys. Allometric scaling demonstrated more rapid clearance in small animals compared with humans and a volume of distribution (steady state) proportional to body weight across species, suggesting that animal pharmacokinetics are predictive of human pharmacokinetics. CONCLUSIONS Repeated doses of rFVIIIFc in 2 relevant animal species and high doses of rFVIIIFc in monkeys were well tolerated. These results supported the clinical safety of rFVIIIFc observed in phase 1/2a and phase 3 clinical trials.

UI MeSH Term Description Entries
D007141 Immunoglobulin Fc Fragments Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fc Fragment,Fc Fragments,Fc Immunoglobulin,Fc Immunoglobulins,Ig Fc Fragments,Immunoglobulin Fc Fragment,Immunoglobulins, Fc,Immunoglobulins, Fc Fragment,Fc Fragment Immunoglobulins,Fc Fragment, Immunoglobulin,Fc Fragments, Ig,Fc Fragments, Immunoglobulin,Fragment Immunoglobulins, Fc,Fragment, Fc,Fragments, Ig Fc,Immunoglobulin, Fc
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D005260 Female Females
D006467 Hemophilia A The classic hemophilia resulting from a deficiency of factor VIII. It is an inherited disorder of blood coagulation characterized by a permanent tendency to hemorrhage. Factor VIII Deficiency,Hemophilia,Autosomal Hemophilia A,Classic Hemophilia,Deficiency, Factor VIII,Factor 8 Deficiency, Congenital,Factor VIII Deficiency, Congenital,Haemophilia,Hemophilia A, Congenital,Hemophilia, Classic,As, Autosomal Hemophilia,Autosomal Hemophilia As,Classic Hemophilias,Congenital Hemophilia A,Congenital Hemophilia As,Hemophilia A, Autosomal,Hemophilia As,Hemophilia As, Autosomal,Hemophilia As, Congenital,Hemophilias, Classic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
January 2015, Clinical pharmacology in drug development,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
January 2017, Journal of infusion nursing : the official publication of the Infusion Nurses Society,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
November 2018, Blood advances,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
January 2024, Frontiers in immunology,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
January 2013, Journal of thrombosis and haemostasis : JTH,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
May 2016, Pediatric blood & cancer,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
January 2014, Blood,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
July 2015, Biologicals : journal of the International Association of Biological Standardization,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
March 2012, Blood,
Jennifer A Dumont, and Kenneth S Loveday, and David R Light, and Glenn F Pierce, and Haiyan Jiang
June 2017, Journal of thrombosis and haemostasis : JTH,
Copied contents to your clipboard!