A yeast mutation that stabilizes a plasmid bearing a mutated ARS1 element. 1989

C Thrash-Bingham, and W L Fangman
Department of Genetics, University of Washington, Seattle 98195.

To identify the trans-acting factors involved in autonomously replicating sequence (ARS) function, we initiated a screen for Saccharomyces cerevisiae mutants capable of stabilizing a plasmid that contains a defective ARS element. The amm (altered minichromosome maintenance) mutations recovered in this screen defined at least four complementation groups. amm1, a mutation that has been studied in detail, gave rise to a 17-fold stabilization of one defective ARS1 plasmid over the level seen in wild-type cells. The mutation also affected the stability of at least one plasmid bearing a wild-type ARS element. amm1 is an allele of the previously identified TUP1 gene and exhibited the same pleiotropic phenotypes as other tup1 mutants. Plasmid maintenance was also affected in strains bearing a TUP1 gene disruption. Like the amm1 mutant, the tup1 disruption mutant exhibited ARS-specific plasmid stabilization; however, the ARS specificities of these two mutants differed. The recovery of second-site mutations that suppressed many of the tup1 phenotypes but not the increased plasmid maintenance demonstrates that the plasmid stability phenotype of tup1 mutants is not a consequence of the other defects caused by tup1.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

C Thrash-Bingham, and W L Fangman
February 1990, Molecular & general genetics : MGG,
C Thrash-Bingham, and W L Fangman
July 1986, Nucleic acids research,
C Thrash-Bingham, and W L Fangman
June 2008, RNA (New York, N.Y.),
C Thrash-Bingham, and W L Fangman
May 1988, Biochemistry,
C Thrash-Bingham, and W L Fangman
August 1990, Nucleic acids research,
C Thrash-Bingham, and W L Fangman
October 2017, The Journal of cell biology,
C Thrash-Bingham, and W L Fangman
May 1990, Molecular and cellular biology,
C Thrash-Bingham, and W L Fangman
January 2024, Seminars in cell & developmental biology,
C Thrash-Bingham, and W L Fangman
November 1999, BioTechniques,
C Thrash-Bingham, and W L Fangman
February 2012, Experimental cell research,
Copied contents to your clipboard!