Interaction of Mycoplasma gallisepticum with Chicken Tracheal Epithelial Cells Contributes to Macrophage Chemotaxis and Activation. 2016

Sanjukta Majumder, and Lawrence K Silbart
Department of Animal Science, The University of Connecticut, Storrs, Connecticut, USA Center of Excellence for Vaccine Research, The University of Connecticut, Storrs, Connecticut, USA.

Mycoplasma gallisepticum colonizes the chicken respiratory mucosa and mediates a severe inflammatory response hallmarked by subepithelial leukocyte infiltration. We recently reported that the interaction of M. gallisepticum with chicken tracheal epithelial cells (TECs) mediated the upregulation of chemokine and inflammatory cytokine genes in these cells (S. Majumder, F. Zappulla, and L. K. Silbart, PLoS One 9:e112796, http://dx.doi.org/10.1371/journal.pone.0112796). The current study extends these observations and sheds light on how this initial interaction may give rise to subsequent inflammatory events. Conditioned medium from TECs exposed to the virulent Rlow strain induced macrophage chemotaxis to a much higher degree than the nonvirulent Rhigh strain. Coculture of chicken macrophages (HD-11) with TECs exposed to live mycoplasma revealed the upregulation of several proinflammatory genes associated with macrophage activation, including interleukin-1β (IL-1β), IL-6, IL-8, CCL20, macrophage inflammatory protein 1β (MIP-1β), CXCL-13, and RANTES. The upregulation of these genes was similar to that observed upon direct contact of HD-11 cells with live M. gallisepticum. Coculture of macrophages with Rlow-exposed TECs also resulted in prolonged expression of chemokine genes, such as those encoding CXCL-13, MIP-1β, RANTES, and IL-8. Taken together, these studies support the notion that the initial interaction of M. gallisepticum with host respiratory epithelial cells contributes to macrophage chemotaxis and activation by virtue of robust upregulation of inflammatory cytokine and chemokine genes, thereby setting the stage for chronic tissue inflammation.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009175 Mycoplasma Infections Infections with species of the genus MYCOPLASMA. Eperythrozoonosis,Infections, Mycoplasma,Eperythrozoonoses,Infection, Mycoplasma,Mycoplasma Infection
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014132 Trachea The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi. Tracheas

Related Publications

Sanjukta Majumder, and Lawrence K Silbart
July 1979, American journal of veterinary research,
Sanjukta Majumder, and Lawrence K Silbart
March 2005, Avian diseases,
Sanjukta Majumder, and Lawrence K Silbart
January 1982, Avian diseases,
Sanjukta Majumder, and Lawrence K Silbart
October 2017, Infection and immunity,
Sanjukta Majumder, and Lawrence K Silbart
November 1971, Journal of medical microbiology,
Sanjukta Majumder, and Lawrence K Silbart
May 2024, The Journal of infectious diseases,
Sanjukta Majumder, and Lawrence K Silbart
January 1973, National Institute of Animal Health quarterly,
Sanjukta Majumder, and Lawrence K Silbart
August 2022, Avian pathology : journal of the W.V.P.A,
Copied contents to your clipboard!