Comparison of gSSR and EST-SSR markers for analyzing genetic variability among tomato cultivars (Solanum lycopersicum L.). 2015

R Zhou, and Z Wu, and F L Jiang, and M Liang
Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.

In order to study genetic variability and develop better strategies for the utilization of 48 tomato cultivars from America, China, the Netherlands, and Portugal, genomic simple sequence repeat (gSSR) and EST-derived SSR (EST-SSR) markers were applied. In all, 15 of 82 gSSR and 18 of 115 EST-SSR markers showed polymorphic loci. There were 995 and 2072 clear fragments amplified by polymorphic gSSR and EST-SSR markers, respectively. The total and average number of alleles detected by EST-SSRs (75, 4.2) was more than gSSRs (54, 3.6) as a result of some multi-locus EST-SSRs. A lower polymorphism information content value was found in gSSRs (0.529) compared to EST-SSRs (0.620). Similarity coefficient matrixes of the 48 tomato cultivars were established based on the gSSRs and EST-SSRs, and UPGMA dendrograms were constructed from the gSSRs and EST-SSRs similarity coefficient matrixes. A high similarity was observed between the gSSRs and EST-SSRs dendrograms. Genetic variability of four tomato populations from different countries showed that the observed number of alleles and Nei's genetic diversity were highest in the American population, and the effective number of alleles was highest in the Dutch population. The estimated genetic structure showed some tomato cultivars from different countries shared a common genetic background, which might be related to gene flow. It was inferred that both gSSR and EST-SSR markers were effective to assess genetic variability of tomato cultivars, and the combination of both markers could be more effective for genetic diversity analysis in tomato.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D018551 Solanum lycopersicum A plant species of the family SOLANACEAE, native of South America, widely cultivated for their edible, fleshy, usually red fruit. Lycopersicon esculentum,Tomatoes,Tomato
D018895 Microsatellite Repeats A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs). Microsatellite Markers,Pentanucleotide Repeats,Simple Repetitive Sequence,Tetranucleotide Repeats,Microsatellites,Short Tandem Repeats,Simple Sequence Repeats,Marker, Microsatellite,Markers, Microsatellite,Microsatellite,Microsatellite Marker,Microsatellite Repeat,Pentanucleotide Repeat,Repeat, Microsatellite,Repeat, Pentanucleotide,Repeat, Short Tandem,Repeat, Simple Sequence,Repeat, Tetranucleotide,Repeats, Microsatellite,Repeats, Pentanucleotide,Repeats, Short Tandem,Repeats, Simple Sequence,Repeats, Tetranucleotide,Repetitive Sequence, Simple,Repetitive Sequences, Simple,Sequence Repeat, Simple,Sequence Repeats, Simple,Sequence, Simple Repetitive,Sequences, Simple Repetitive,Short Tandem Repeat,Simple Repetitive Sequences,Simple Sequence Repeat,Tandem Repeat, Short,Tandem Repeats, Short,Tetranucleotide Repeat
D020224 Expressed Sequence Tags Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived. ESTs,Expressed Sequence Tag,Sequence Tag, Expressed,Sequence Tags, Expressed,Tag, Expressed Sequence,Tags, Expressed Sequence

Related Publications

R Zhou, and Z Wu, and F L Jiang, and M Liang
June 2008, Journal of genetics and genomics = Yi chuan xue bao,
R Zhou, and Z Wu, and F L Jiang, and M Liang
May 2022, Saudi journal of biological sciences,
R Zhou, and Z Wu, and F L Jiang, and M Liang
October 2011, Genetics and molecular research : GMR,
R Zhou, and Z Wu, and F L Jiang, and M Liang
September 2018, Saudi journal of biological sciences,
R Zhou, and Z Wu, and F L Jiang, and M Liang
August 2022, Biotech (Basel (Switzerland)),
R Zhou, and Z Wu, and F L Jiang, and M Liang
February 2014, Molecules (Basel, Switzerland),
R Zhou, and Z Wu, and F L Jiang, and M Liang
January 2014, Genetics and molecular research : GMR,
R Zhou, and Z Wu, and F L Jiang, and M Liang
March 2009, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
R Zhou, and Z Wu, and F L Jiang, and M Liang
January 2014, Biotechnology, biotechnological equipment,
Copied contents to your clipboard!