Extensively and pan-drug resistant Pseudomonas aeruginosa keratitis: clinical features, risk factors, and outcome. 2016

Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
Cornea and Anterior Segment Services, L. V. Prasad Eye Institute, Visakhapatnam, Andhra Pradesh, 530040, India. merle@lvpei.org.

BACKGROUND Emergence of multi-drug resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) strains of Pseudomonas aeruginosa pose a significant therapeutic challenge. Managing XDR and PDR Pseudomonas aeruginosa keratitis would be extremely difficult due to paucity of safe and effective topical medications. We aim to describe the clinical features, risk factors, and outcome of XDR and PDR Pseudomonas aeruginosa keratitis. METHODS A retrospective chart review of consecutive cases of XDR and PDR Pseudomonas aeruginosa keratitis were identified from Ocular Microbiology Department. XDR and PDR were defined based on criteria established by Centers for Disease Control and European Centre for Disease Prevention and Control. The following data was collected: age, gender, occupation, symptom duration, systemic and ocular risk factors, infiltrate characteristics, antimicrobial susceptibility, complications, surgical interventions, presenting, and final visual acuity and final outcome. Complete success was defined as resolution of the infiltrate with scar formation on medical treatment alone. Partial success was the resolution following tissue adhesive application. Failure was an inadequate response to medical therapy with progressive increase in infiltrate, corneal melting, and/or perforation necessitating one or more therapeutic penetrating keratoplasties or evisceration. RESULTS Fifteen eyes of 13 patients were included. Seven (53.8 %) were male with left eye involvement in nine (60 %) cases. Most common risk factors were bandage contact lens (6, 40 %), topical steroids (5, 33.3 %), previous therapeutic graft (4, 26.6 %), and ocular surface disorder (OSD) following Stevens Johnson Syndrome (SJS) (4, 26.6 %). Of 15 isolates, six (40 %) were sensitive only to imipenem, three (20 %) to colistin, two (13.3 %) to neomycin, one (6.7 %) each to imipenem and colistin, imipenem and ceftazidime, and azithromycin respectively. One isolate was resistant to all antibiotics. Complete success was noted in two (16.67 %), partial success in three (25 %) and failure in seven (58.33 %) eyes. Five (33.3 %) eyes healed on imipenem (three eyes), azithromycin (one eye), and imipenem and colistin (one eye). CONCLUSIONS XDR and PDR Pseudomonas aeruginosa keratitis are extremely difficult to treat. Globe salvage was possible in all cases; however, more than half required therapeutic grafts. Close monitoring of patients with known ocular and systemic factors is warranted.

UI MeSH Term Description Entries
D008297 Male Males
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011552 Pseudomonas Infections Infections with bacteria of the genus PSEUDOMONAS. Infections, Pseudomonas,Pseudomonas aeruginosa Infection,Infection, Pseudomonas,Pseudomonas Infection,Pseudomonas aeruginosa Infections
D002939 Ciprofloxacin A broad-spectrum antimicrobial carboxyfluoroquinoline. Bay-09867,Ciprinol,Cipro,Ciprofloxacin Hydrochloride,Ciprofloxacin Hydrochloride Anhydrous,Ciprofloxacin Monohydrochloride Monohydrate,Anhydrous, Ciprofloxacin Hydrochloride,Bay 09867,Bay09867,Hydrochloride Anhydrous, Ciprofloxacin,Hydrochloride, Ciprofloxacin,Monohydrate, Ciprofloxacin Monohydrochloride,Monohydrochloride Monohydrate, Ciprofloxacin
D003091 Colistin Cyclic polypeptide antibiotic from Bacillus colistinus. It is composed of Polymyxins E1 and E2 (or Colistins A, B, and C) which act as detergents on cell membranes. Colistin is less toxic than Polymyxin B, but otherwise similar; the methanesulfonate is used orally. Polymyxin E,Colimycin,Colisticin,Colistin Sulfate,Coly-Mycin,Totazina,Sulfate, Colistin
D003320 Corneal Ulcer Loss of epithelial tissue from the surface of the cornea due to progressive erosion and necrosis of the tissue; usually caused by bacterial, fungal, or viral infection. Keratitis, Ulcerative,Keratitides, Ulcerative,Ulcer, Corneal,Ulcerative Keratitides,Ulcerative Keratitis
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
January 2018, PloS one,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
October 2015, Ophthalmology,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
September 2023, bioRxiv : the preprint server for biology,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
January 2024, Ophthalmology science,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
March 2024, JAMA ophthalmology,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
August 2014, Infection,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
October 2012, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
December 2012, Antimicrobial agents and chemotherapy,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
March 2024, Journal of global antimicrobial resistance,
Merle Fernandes, and Divya Vira, and Radhika Medikonda, and Nagendra Kumar
January 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
Copied contents to your clipboard!