Discrimination between conformational selection and induced fit protein-ligand binding using Integrated Global Fit analysis. 2016

Franz-Josef Meyer-Almes
Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Schnittspahnstr. 12, 64287, Darmstadt, Germany. franz-josef.meyer-almes@h-da.de.

Molecular recognition between proteins and small molecule ligands is at the heart of biological function in cellular systems and the basis of modern rational drug development. Therefore, the mechanisms governing protein-ligand interaction have been objects of research for many decades. The last 15 years has seen a revival of a discussion whether conformational selection (CS) or induced fit (IF) is the most relevant binding mechanism. A decreasing observed rate constant, k obs, with increasing ligand concentration was considered to be a hallmark of CS, but according to contemporary knowledge, a positive saturating behavior of k obs can be explained by both CS and IF mechanisms. The only currently recognized kinetic method to differentiate between both binding mechanisms includes the measurement of two separate series of binding kinetics with variation of either protein or ligand under pseudo-first-order conditions. This study avoids the disadvantage of high protein concentrations and provides evidence that a comprehensive Integrated Global Fit analysis of sets of binding kinetics with just varied ligand concentration in combination with equilibrium data and optional displacement kinetics can effectively differentiate between CS and IF binding mechanisms. The limiting situation, when physical binding dominates over the previous (CS) or subsequent (IF) conformational changes, is carefully analyzed. Finally, the relevance of kinetic methods and the elucidation of more complex binding mechanisms are discussed for advanced rational selection and optimization of drug candidates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking

Related Publications

Franz-Josef Meyer-Almes
July 2014, Proceedings of the National Academy of Sciences of the United States of America,
Franz-Josef Meyer-Almes
April 2024, Proceedings of the National Academy of Sciences of the United States of America,
Franz-Josef Meyer-Almes
December 2021, Archives of biochemistry and biophysics,
Franz-Josef Meyer-Almes
December 2013, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!