High density lipoprotein efficiently accepts surface but not internal oxidised lipids from oxidised low density lipoprotein. 2016

Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Victoria, Australia.

OBJECTIVE Oxidised low density lipoprotein (oxLDL) contributes to atherosclerosis, whereas high density lipoprotein (HDL) is known to be atheroprotective due, at least in part, to its ability to remove oxidised lipids from oxLDL. The molecular details of the lipid transfer process are not fully understood. We aimed to identify major oxidised lipid species of oxLDL and investigate their transfer upon co-incubation with HDL with varying levels of oxidation. RESULTS A total of 14 major species of oxidised phosphatidylcholine and oxidised cholesteryl ester from oxLDL were identified using an untargeted mass spectrometry approach. HDL obtained from pooled plasma of normolipidemic subjects (N=5) was oxidised under mild and heavy oxidative conditions. Non-oxidised (native) HDL and oxidised HDL were co-incubated with oxLDL, re-isolated and lipidomic analysis was performed. Lipoprotein surface lipids, oxidised phosphatidylcholines and oxidised cholesterols (7-ketocholesterol and 7β-hydroxycholesterol), but not internal oxidised cholesteryl esters, were effectively transferred to native HDL. Saturated and monounsaturated lyso-phosphatidylcholines were also transferred from the oxLDL to native HDL. These processes were attenuated when HDL was oxidised under mild and heavy oxidative conditions. The impaired capacities were accompanied by an increase in a ratio of sphingomyelin to phosphatidylcholine and a reduction in phosphatidylserine content in oxidised HDL, both of which are potentially important regulators of the oxidised lipid transfer capacity of HDL. CONCLUSIONS Our study has revealed the differential transfer efficiency of surface and internal oxidised lipids from oxLDL and their acceptance onto HDL. These capacities were modulated when HDL was itself oxidised.

UI MeSH Term Description Entries
D007653 Ketocholesterols Cholesterol substituted in any position by a keto moiety. The 7-keto isomer inhibits cholesterol uptake in the coronary arteries and aorta by blocking 3-hydroxy-3-methylglutaryl-CoA reductase activity. Oxocholesterols
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008244 Lysophosphatidylcholines Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties. Lysolecithin,Lysolecithins,Lysophosphatidylcholine
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl

Related Publications

Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
July 2017, Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
July 1994, Lancet (London, England),
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
March 1998, Biochemical and biophysical research communications,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
January 1993, British heart journal,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
June 1996, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
January 1997, Indian heart journal,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
January 1997, Pharmacology & therapeutics,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
November 2006, Archives of biochemistry and biophysics,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
February 1989, Biochemistry,
Aliki A Rasmiena, and Christopher K Barlow, and Theodore W Ng, and Dedreia Tull, and Peter J Meikle
February 2001, Biochemistry,
Copied contents to your clipboard!