Energy balance and brown adipose tissue thermogenesis during chronic endotoxemia in rats. 1989

J Arnold, and R A Little, and N J Rothwell
Department of Surgery, North Western Injury Research Centre, Manchester, United Kingdom.

The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5'-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D004731 Endotoxins Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells. Endotoxin
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Arnold, and R A Little, and N J Rothwell
July 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
J Arnold, and R A Little, and N J Rothwell
October 1984, The Journal of nutrition,
J Arnold, and R A Little, and N J Rothwell
May 1986, The American journal of physiology,
J Arnold, and R A Little, and N J Rothwell
February 1986, The American journal of physiology,
J Arnold, and R A Little, and N J Rothwell
January 1984, Comparative biochemistry and physiology. A, Comparative physiology,
J Arnold, and R A Little, and N J Rothwell
May 1992, Acta endocrinologica,
J Arnold, and R A Little, and N J Rothwell
February 1992, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J Arnold, and R A Little, and N J Rothwell
September 1978, The American journal of physiology,
J Arnold, and R A Little, and N J Rothwell
October 1999, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!