How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment). 1989

C M Joyce
Department of Molecular Biophysics and Biochemistry, Yale University Medical School, New Haven, Connecticut 06510.

The polymerase and 3'-5'-exonuclease activities of the Klenow fragment of DNA polymerase I are located on separate structural domains of the protein, separated by about 30 A. To determine whether a DNA primer terminus can move from one active site to the other without dissociation of the enzyme-DNA complex, we carried out reactions on a labeled DNA substrate in the presence of a large excess of unlabeled DNA, to limit observations to a single enzyme-DNA encounter. The results indicated that while Klenow fragment is capable of intramolecular shuttling of a DNA substrate between the two catalytic sites, the intermolecular pathway involving enzyme-DNA dissociation can also be used. Thus, there is nothing in the protein structure or the reaction mechanism that dictates a particular means of moving the DNA substrate. Instead, the use of the intermolecular or the intramolecular pathway is determined by the competition between the polymerase or exonuclease reaction and DNA dissociation. When the substrate has a mispaired primer terminus, DNA dissociation seems generally more rapid than exonucleolytic digestion. Thus, Klenow fragment edits its own polymerase errors by a predominantly intermolecular process, involving dissociation of the enzyme-DNA complex and reassociation of the DNA with the exonuclease site of a second molecule of Klenow fragment.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D043211 Exodeoxyribonuclease V An ATP-dependent exodeoxyribonuclease that cleaves in either the 5'- to 3'- or the 3'- to 5'-direction to yield 5'-phosphooligonucleotides. It is primarily found in BACTERIA. ATP-Dependent DNase,Exodeoxyribonuclease V, alpha Chain,Exodeoxyribonuclease V, beta Chain,Exodeoxyribonuclease V, gamma Chain,Exonuclease V,RecBC DNase,RecBC Deoxyribonuclease,RecBCD Enzyme,ATP Dependent DNase,Deoxyribonuclease, RecBC

Related Publications

C M Joyce
May 2020, Cold Spring Harbor protocols,
C M Joyce
June 2015, Archives of biochemistry and biophysics,
C M Joyce
August 1996, The Journal of biological chemistry,
Copied contents to your clipboard!