Antagonism of triazolam self-administration in rhesus monkeys responding under a progressive-ratio schedule: In vivo apparent pA2 analysis. 2016

Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
Harvard Medical School, New England Primate Research Center, One Pine Hill Drive, PO Box 9102, Southborough, MA 01772-9102, USA.

BACKGROUND Conventional benzodiazepines bind non-selectively to GABAA receptors containing α1, α2, α3, and α5 subunits (α1GABAA, α2GABAA, α3GABAA, and α5GABAA receptors, respectively), and the role of these different GABAA receptor subtypes in the reinforcing effects of benzodiazepines has not been characterized fully. We used a pharmacological antagonist approach with available subtype-selective ligands to evaluate the role of GABAA receptor subtypes in the reinforcing effects of the non-selective conventional benzodiazepine, triazolam. METHODS Rhesus monkeys (n=4) were trained under a progressive-ratio schedule of intravenous midazolam delivery and dose-response functions were determined for triazolam, in the absence and presence of flumazenil (non-selective antagonist), βCCT and 3-PBC (α1GABAA-preferring antagonists), and XLi-093 (α5GABAA-selective antagonist). RESULTS Flumazenil, βCCT and 3-PBC shifted the dose-response functions for triazolam to the right in a surmountable fashion, whereas XLi-093 was ineffective. Schild analyses revealed rank orders of potencies of flumazenil=βCCT>3-PBC. Comparison of potencies between self-administration and previous binding studies with human cloned GABAA receptor subtypes suggested that the potencies for βCCT and 3-PBC were most consistent with binding at α2GABAA and α3GABAA receptors, but not α1GABAA or α5GABAA receptor subtypes. CONCLUSIONS Our findings were not entirely consistent with blockade of α1GABAA receptors and are consistent with the possibility of α2GABAA and/or α3GABAA subtype involvement in antagonism of the reinforcing effects of triazolam. The α5GABAA receptor subtype likely does not play a substantial role in self-administration under these conditions.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D012055 Reinforcement Schedule A schedule prescribing when the subject is to be reinforced or rewarded in terms of temporal interval in psychological experiments. The schedule may be continuous or intermittent. Reinforcement Schedules,Schedule, Reinforcement,Schedules, Reinforcement
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001569 Benzodiazepines A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring. Benzodiazepine,Benzodiazepine Compounds

Related Publications

Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
December 2022, The Journal of pharmacology and experimental therapeutics,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
October 1997, Psychopharmacology,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
June 1996, Psychopharmacology,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
June 2013, The Journal of pharmacology and experimental therapeutics,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
August 1995, Psychopharmacology,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
May 2003, Psychopharmacology,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
March 2001, Drug and alcohol dependence,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
November 1995, Journal of the experimental analysis of behavior,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
February 1996, Psychopharmacology,
Bradford D Fischer, and Donna M Platt, and Sundari K Rallapalli, and Ojas A Namjoshi, and James M Cook, and James K Rowlett
December 1995, Behavioural pharmacology,
Copied contents to your clipboard!