Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. 2016

Daniel J Cosgrove
Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA dcosgrove@psu.edu.

The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

UI MeSH Term Description Entries
D010368 Pectins High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. Calcium Pectinate,Methoxy Pectin,Methoxylpectin,Methoxypectin,Pectin,Pectinic Acid,Zinc Pectinate,Pectin, Methoxy,Pectinate, Calcium,Pectinate, Zinc
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D059828 Plant Cells Basic functional unit of plants. Cell, Plant,Cells, Plant,Plant Cell
D063245 Plant Development Processes orchestrated or driven by a plethora of genes, plant hormones, and inherent biological timing mechanisms facilitated by secondary molecules, which result in the systematic transformation of plants and plant parts, from one stage of maturity to another. Plant Morphogenesis,Development, Plant,Developments, Plant,Morphogeneses, Plant,Morphogenesis, Plant,Plant Developments,Plant Morphogeneses

Related Publications

Daniel J Cosgrove
January 2024, The European physical journal. E, Soft matter,
Daniel J Cosgrove
March 2007, General physiology and biophysics,
Daniel J Cosgrove
July 2013, Molecular plant,
Daniel J Cosgrove
February 2011, Journal of plant physiology,
Daniel J Cosgrove
September 2009, Trends in plant science,
Daniel J Cosgrove
July 2019, Journal of experimental botany,
Copied contents to your clipboard!