Mechanism of action of Escherichia coli exonuclease III. 1989

Y W Kow
Department of Microbiology and Immunology, New York Medical College, Valhalla 10595.

Exonuclease III is the major apurinic/apyrimidinic (AP) endonuclease of Escherichia coli, accounting for more than 80% of the total cellular AP endonuclease activity. We have shown earlier that the endonucleolytic activity of exonuclease III is able to hydrolyze the phosphodiester bond 5' to the urea N-glycoside in a duplex DNA [Kow, Y. W., & Wallace, S. S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8354-8358]. Therefore, we were interested in studying the mechanism of action of the endonucleolytic activity of exonuclease III by preparing DNA containing different base lesions as well as chemically modified AP sites. When AP sites were converted to O-alkylhydroxylamine residues, exonuclease III was able to hydrolyze the phosphodiester bond 5' to O-alkylhydroxylamine residues. The apparent Km for different O-alkylhydroxylamine residues was not affected by the particular O-alkylhydroxylamine residue substituted; however, the apparent Vmax decreased as the size of the residue increased. On the basis of a study of the substrate specificity of exonuclease III, a modification of the Weiss model for the mechanism of action of exonuclease III is presented. Furthermore, a temperature study of exonucleolytic activity of exonuclease III in the presence of Mg2+ showed discontinuity in the Arrhenius plot. However, no discontinuity was observed when the reaction was performed in the presence of Ca2+. Similarly, no discontinuity was observed for the endonucleolytic activity of exonuclease III, in the presence of either Ca2+ or Mg2+. These data suggest that, in the presence of Mg2+, exonuclease III, in the presence of either Ca2+ or Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

Y W Kow
July 1974, The Journal of biological chemistry,
Y W Kow
September 1983, The Journal of biological chemistry,
Y W Kow
January 1999, Nucleic acids symposium series,
Y W Kow
July 1977, The Journal of biological chemistry,
Y W Kow
April 1976, The Journal of biological chemistry,
Y W Kow
March 1993, Analytical biochemistry,
Y W Kow
January 1980, Methods in enzymology,
Y W Kow
January 2015, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!