Heat shock response in Escherichia coli promotes assembly of plasmid encoded RNA polymerase beta-subunit into RNA polymerase. 1989

M V Kashlev, and A I Gragerov, and V G Nikiforov
Institute of Molecular Genetics, USSR Acad Sci, Moscow.

Escherichia coli cells, carrying a rifampicin sensitive RNA polymerase beta-subunit gene in the chromosome and a rifampicin resistant beta-subunit gene placed under the control of a strong promoter in a multicopy plasmid, are unable to grow in the presence of rifampicin, despite the accumulation of large quantities of the resistant subunit. A major portion of the overproduced subunit is found in an insoluble form. Conditions known to induce the heat shock proteins (hsps), e.g. elevated temperature or the presence of ethanol in the growth medium, increase the amount of the plasmid-borne beta-subunit which apparently assembles into active RNA polymerase and makes the plasmid bearing cells rifampicin resistant. Alternatively, plasmid-borne subunits assemble into RNA polymerase with low efficiency in rpoH mutant cells known to have reduced level of hsps. We suggest that the plasmid-borne subunit is poorly assembled into RNA polymerase and that hsps promote the assembly by interfering with beta-subunit aggregation.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed

Related Publications

M V Kashlev, and A I Gragerov, and V G Nikiforov
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
M V Kashlev, and A I Gragerov, and V G Nikiforov
August 1997, Journal of molecular biology,
M V Kashlev, and A I Gragerov, and V G Nikiforov
January 1981, Advances in biophysics,
M V Kashlev, and A I Gragerov, and V G Nikiforov
September 1988, European journal of biochemistry,
M V Kashlev, and A I Gragerov, and V G Nikiforov
October 1988, Genetika,
M V Kashlev, and A I Gragerov, and V G Nikiforov
March 1991, Journal of molecular biology,
M V Kashlev, and A I Gragerov, and V G Nikiforov
June 1992, The Journal of biological chemistry,
M V Kashlev, and A I Gragerov, and V G Nikiforov
May 1996, Journal of molecular biology,
Copied contents to your clipboard!