Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements. 2016

Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
Materials Science Research Institute, Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest 1088, Hungary and Global Institute of Computational Molecular and Materials Science (GIOCOMMS), Budapest (Hungary)/Beijing (China)/Toronto (Canada).

Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.

UI MeSH Term Description Entries
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D005899 Glass Ionomer Cements A polymer obtained by reacting polyacrylic acid with a special anion-leachable glass (alumino-silicate). The resulting cement is more durable and tougher than others in that the materials comprising the polymer backbone do not leach out. Glass Ionomer Cement,Glass Polyalkenoate Cement,Polyalkenoate Cement,Polyalkenoate Cements,Glass Polyalkenoate Cements,Glass-Ionomer Cement,Cement, Glass Ionomer,Cement, Glass Polyalkenoate,Cement, Glass-Ionomer,Cement, Polyalkenoate,Cements, Glass Ionomer,Cements, Glass Polyalkenoate,Cements, Glass-Ionomer,Cements, Polyalkenoate,Glass-Ionomer Cements,Ionomer Cement, Glass,Polyalkenoate Cement, Glass
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D017640 Silicates The generic term for salts derived from silica or the silicic acids. They contain silicon, oxygen, and one or more metals, and may contain hydrogen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th Ed) Silicate
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics

Related Publications

Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
February 2008, Journal of materials science. Materials in medicine,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
January 1990, Journal of the American Dental Association (1939),
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
March 1992, Tandlaegebladet,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
February 2024, Heliyon,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
January 1992, Biomaterials,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
April 2017, Dental materials : official publication of the Academy of Dental Materials,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
August 2002, Acta crystallographica. Section D, Biological crystallography,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
March 2005, Dental materials : official publication of the Academy of Dental Materials,
Kun Viviana Tian, and Gregory A Chass, and Devis Di Tommaso
March 1994, Science (New York, N.Y.),
Copied contents to your clipboard!