Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification with Fullerene Derivatives. 2016
Planar heterojunction perovskite solar cells with a high efficiency up to 17.76% are fabricated by modifying the compact TiO2 (c-TiO2) with a [6,6]-phenyl-C61-butyric acid (PCBA) monolayer. High quality CH3NH3PbI3 films can be easily fabricated on PCBA-modified c-TiO2 substrates by a one-step solution processing method. Significant improvements of the device parameters are observed after PCBA modification. A high open-circuit voltage (Voc) of 1.16 V has been achieved, indicating that the PCBA monolayer can act as a hole blocking layer to reduce the trap site density atop the c-TiO2 and the hole recombination at the c-TiO2 /perovskite interface. The enhancement of the fill factor, as well as the partial quenching of the fluorescence of perovskite after modification with PCBA, reveals that the charge extraction is improved.
| UI | MeSH Term | Description | Entries |
|---|