Detection of respiratory syncytial virus in nasopharyngeal secretions by DNA-RNA hybridization. 1989

R B Van Dyke, and M Murphy-Corb
Department of Pediatrics, Tulane University, New Orleans, Louisiana 70112.

We have developed an RNA-cDNA hybridization assay for the detection of respiratory syncytial virus (RSV) RNA in nasopharyngeal samples. We chose to use as probe a cDNA complementary to the nucleocapsid protein gene of RSV, integrated into the plasmid vector pBR322. The lower limit of sensitivity of the assay is 8.2 X 10(2) PFU of the Long strain of RSV. In throat washes with added cell-free virus, the assay can detect 3.3 X 10(3) PFU of RSV. Respiratory secretions were collected from a group of 104 infants in New Orleans, and 73 of the samples were tested for RSV by immunofluorescence (IF). All were then frozen at -70 degrees C for later testing by hybridization, and 67 were tested for RSV antigens by enzyme immunoassay (EIA). A second set of respiratory secretions from 48 infants in Denver were cultured for virus, assayed for RSV antigen by EIA, and then frozen for later testing by hybridization. For those samples on which IF was performed, hybridization, compared with IF, had a sensitivity of 49% and a specificity of 66%. For samples tested by EIA, hybridization had a sensitivity of 60% and a specificity of 81% compared with EIA. Compared with virus isolation, hybridization assay had a sensitivity of 73% and a specificity of 92%. With clinical samples, the sensitivity and specificity of the assay were improved with the addition of a control blot, which was hybridized to the plasmid vector (pBR322). The performance of the hybridization assay can be expected to improve when the assay is used with fresh clinical material rather than frozen samples.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007223 Infant A child between 1 and 23 months of age. Infants
D009305 Nasopharynx The top portion of the pharynx situated posterior to the nose and superior to the SOFT PALATE. The nasopharynx is the posterior extension of the nasal cavities and has a respiratory function. Rhinopharynx,Choanae,Nasopharynges,Nasopharynxes,Rhinopharynges,Rhinopharynxes
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010253 Respirovirus Infections Infections with viruses of the genus RESPIROVIRUS, family PARAMYXOVIRIDAE. Host cell infection occurs by adsorption, via HEMAGGLUTININ, to the cell surface. Infections, Respirovirus
D011237 Predictive Value of Tests In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test. Negative Predictive Value,Positive Predictive Value,Predictive Value Of Test,Predictive Values Of Tests,Negative Predictive Values,Positive Predictive Values,Predictive Value, Negative,Predictive Value, Positive
D012136 Respiratory Syncytial Viruses A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported. Chimpanzee Coryza Agent,Orthopneumovirus,RSV Respiratory Syncytial Virus,Chimpanzee Coryza Agents,Coryza Agent, Chimpanzee,Orthopneumoviruses,Respiratory Syncytial Virus,Syncytial Virus, Respiratory,Virus, Respiratory Syncytial
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA

Related Publications

R B Van Dyke, and M Murphy-Corb
January 1990, Journal of virological methods,
R B Van Dyke, and M Murphy-Corb
March 1991, Journal of clinical microbiology,
R B Van Dyke, and M Murphy-Corb
December 1970, The Journal of hygiene,
R B Van Dyke, and M Murphy-Corb
October 1983, Journal of clinical microbiology,
R B Van Dyke, and M Murphy-Corb
November 1985, Journal of clinical microbiology,
R B Van Dyke, and M Murphy-Corb
February 1990, Enfermedades infecciosas y microbiologia clinica,
R B Van Dyke, and M Murphy-Corb
January 1993, Enfermedades infecciosas y microbiologia clinica,
Copied contents to your clipboard!