Post-transcriptional gene silencing in plants: a double-edged sword. 2016

Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.

In plants, post-transcriptional gene silencing (PTGS) protects the genome from foreign genes and restricts the expression of certain endogenous genes for proper development. Here, we review the recent progress about how the unwanted PTGS is avoided in plants. As a decision-making step of PTGS, aberrant transcripts from most endogenous coding genes are strictly sorted to the bidirectional RNA decay pathways in cytoplasm but not to the short interference RNA (siRNA)-mediated PTGS, with the exception of a few development-relevant endogenous siRNA-producing genes. We also discuss a finely balanced PTGS threshold model that plants fully take advantage of the power of PTGS without self-harm.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D018749 RNA, Plant Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis. Plant RNA
D020868 Gene Silencing Interruption or suppression of the expression of a gene at transcriptional or translational levels. Gene Inactivation,Inactivation, Gene,Silencing, Gene
D020871 RNA Stability The extent to which an RNA molecule retains its structural integrity and resists degradation by RNASE, and base-catalyzed HYDROLYSIS, under changing in vivo or in vitro conditions. RNA Decay,mRNA Decay,mRNA Transcript Degradation,RNA Degradation,RNA Instability,mRNA Degradation,mRNA Instability,mRNA Stability,Decay, RNA,Decay, mRNA,Degradation, RNA,Degradation, mRNA,Degradation, mRNA Transcript,Instability, RNA,Instability, mRNA,Stability, RNA,Stability, mRNA,Transcript Degradation, mRNA
D034622 RNA Interference A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process. Gene Silencing, Post-Transcriptional,Post-Transcriptional Gene Silencing,Co-Suppression,Cosuppression,Posttranscriptional Gene Silencing,RNA Silencing,RNAi,Co Suppression,Gene Silencing, Post Transcriptional,Gene Silencing, Posttranscriptional,Gene Silencings, Posttranscriptional,Interference, RNA,Post Transcriptional Gene Silencing,Post-Transcriptional Gene Silencings,Silencing, Post-Transcriptional Gene
D034741 RNA, Small Interfering Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions. RNA, Scan,Repeat-Associated siRNA,Scan RNA,Small Scan RNA,Trans-Acting siRNA,siRNA,siRNA, Repeat-Associated,siRNA, Trans-Acting,Short Hairpin RNA,Short Interfering RNA,Small Hairpin RNA,Small Interfering RNA,scnRNA,shRNA,tasiRNA,Hairpin RNA, Short,Hairpin RNA, Small,Interfering RNA, Short,Interfering RNA, Small,RNA, Short Hairpin,RNA, Short Interfering,RNA, Small Hairpin,RNA, Small Scan,Repeat Associated siRNA,Scan RNA, Small,Trans Acting siRNA,siRNA, Repeat Associated,siRNA, Trans Acting

Related Publications

Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
June 1997, Current opinion in cell biology,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
September 2001, Journal of cell science,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
October 2003, Plant cell reports,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
June 2000, Nature,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
April 2008, Nature reviews. Drug discovery,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
January 2013, Journal of hospital medicine,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
September 2020, Breathe (Sheffield, England),
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
April 2014, Prescrire international,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
April 2002, Nature cell biology,
Xinyan Zhang, and Ying Zhu, and Huihui Wu, and Hongwei Guo
March 1999, Nursing spectrum (D.C./Baltimore metro ed.),
Copied contents to your clipboard!