Receptor binding and biological potency of despentapeptide insulin. 1989

R Taylor, and C S Hetherington, and S Tolley
Department of Medicine, University of Newcastle upon Tyne, United Kingdom.

The receptor binding and biological potency of despentapeptide insulin (DPI) was assessed in human adipocytes, rat adipocytes and rat hepatocytes. DPI displayed a lower affinity for binding to both human adipocytes (half-maximum displacement at 0.89 +/- 0.04 and 0.20 +/- 0.02 nmol/l for DPI and insulin respectively; P less than 0.001) and rat adipocytes (half-maximum displacement at 7.12 +/- 1.06 and 1.14 +/- 0.18 nmol/l respectively, P less than 0.05). However, although DPI was less potent than unmodified insulin in stimulating glucose uptake in rat adipocytes (half-maximal stimulation at 2.0 +/- 0.67 and 0.47 +/- 0.18 nmol/l respectively; P less than 0.05), DPI was equipotent with insulin in human adipocytes (half-maximal stimulation at 0.034 +/- 0.001 and 0.027 +/- 0.001 nmol/l respectively; P greater than 0.2). In rat hepatocytes, DPI was twofold less potent in binding displacement activity (half-maximum displacement at 3.8 +/- 0.9 and 1.7 +/- 0.3 nmol/l respectively; P less than 0.01) but appeared to be equivalent in stimulating amino butyric acid uptake (half-maximum stimulation at 0.98 +/- 0.12 and 0.95 +/- 0.26 nmol/l respectively). The difference in affinity of DPI binding to rat liver membranes was less marked (1.3 fold decreased compared with insulin: 5.3 +/- 0.7 and 4.2 +/- 0.6 nmol/l respectively; P less than 0.001). Thus, the decreased receptor affinity of DPI was reflected in decreased biological potency in rat adipocytes, but not in human adipocytes nor rat hepatocytes. These data suggest differences in the binding-action linking in the cells of different tissues and different species.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R Taylor, and C S Hetherington, and S Tolley
June 1975, Life sciences,
R Taylor, and C S Hetherington, and S Tolley
February 1984, Biochimica et biophysica acta,
R Taylor, and C S Hetherington, and S Tolley
February 1984, Biochemical and biophysical research communications,
R Taylor, and C S Hetherington, and S Tolley
July 1975, Israel journal of medical sciences,
R Taylor, and C S Hetherington, and S Tolley
February 1992, Biochimica et biophysica acta,
R Taylor, and C S Hetherington, and S Tolley
December 1977, Diabetologia,
R Taylor, and C S Hetherington, and S Tolley
May 1977, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R Taylor, and C S Hetherington, and S Tolley
April 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
R Taylor, and C S Hetherington, and S Tolley
April 1988, Journal of molecular biology,
Copied contents to your clipboard!