Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. 2016

B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500, Australia.

OBJECTIVE To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. METHODS A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV's ranged from 0.8 to 16 cm(3), while the PTV's ranged from 1 to 59 cm(3). In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. RESULTS For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D98% (PTV). Two isolated tumors with very small PTVs (3 and 6 cm(3)) showed increases in D98% of 23% and 22%. Larger PTVs of 13, 26, and 59 cm(3) had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%-60% higher than 1 T. CONCLUSIONS Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study indicate that future clinical inline MRI-guided radiotherapy systems will be able to deliver a dosimetrically superior treatment to small (PTV < 15 cm(3)), isolated lung tumors over non-MRI-Linac systems. This increased efficacy coincides with the reimbursement in the United States of lung CT screening and the likely rapid growth in the number of patients with small lung tumors to be treated with radiotherapy.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D047368 Tumor Burden The total amount (cell number, weight, size or volume) of tumor cells or tissue in the body. Tumor Load,Tumor Volume,Tumor Weight,Burden, Tumor,Load, Tumor,Loads, Tumor,Tumor Loads,Tumor Weights,Volume, Tumor,Weight, Tumor,Weights, Tumor
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies
D060526 Magnetic Fields Areas of attractive or repulsive force surrounding MAGNETS. Magnetic Field,Field, Magnetic,Fields, Magnetic
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
December 2017, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
April 2002, Medical physics,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
June 2023, Micromachines,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
May 2002, Physics in medicine and biology,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
October 2008, Medical physics,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
January 2020, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
April 2003, Physics in medicine and biology,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
January 2015, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
June 2013, Physics in medicine and biology,
B M Oborn, and Y Ge, and N Hardcastle, and P E Metcalfe, and P J Keall
October 2000, Physics in medicine and biology,
Copied contents to your clipboard!