Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. 2016

Richard J Wheeler, and Jack D Sunter, and Keith Gull
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK richard.wheeler@path.ox.ac.uk jack.sunter@path.ox.ac.uk.

Leishmania promastigote parasites have a flagellum, which protrudes from the flagellar pocket at the cell anterior, yet, surprisingly, have homologs of many flagellum attachment zone (FAZ) proteins--proteins used in the related Trypanosoma species to laterally attach the flagellum to the cell body from the flagellar pocket to the cell posterior. Here, we use seven Leishmania mexicana cell lines that expressed eYFP fusions of FAZ protein homologs to show that the Leishmania flagellar pocket includes a FAZ structure. Electron tomography revealed a precisely defined 3D organisation for both the flagellar pocket and FAZ, with striking similarities to those of Trypanosoma brucei. Expression of two T. brucei FAZ proteins in L. mexicana showed that T. brucei FAZ proteins can assemble into the Leishmania FAZ structure. Leishmania therefore have a previously unrecognised FAZ structure, which we show undergoes major structural reorganisation in the transition from the promastigote (sandfly vector) to amastigote (in mammalian macrophages). Morphogenesis of the Leishmania flagellar pocket, a structure important for pathogenicity, is therefore intimately associated with a FAZ; a finding with implications for understanding shape changes involving component modules during evolution.

UI MeSH Term Description Entries
D007894 Leishmania mexicana A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects man and animals including rodents. The Leishmania mexicana complex causes both cutaneous (LEISHMANIASIS, CUTANEOUS) and diffuse cutaneous leishmaniasis (LEISHMANIASIS, DIFFUSE CUTANEOUS) and includes the subspecies amazonensis, garnhami, mexicana, pifanoi, and venezuelensis. L. m. mexicana causes chiclero ulcer, a form of cutaneous leishmaniasis (LEISHMANIASIS, CUTANEOUS) in the New World. The sandfly, Lutzomyia, appears to be the vector. Leishmania (Leishmania) mexicana,Leishmania mexicana amazonensis,Leishmania mexicana mexicana,Leishmania leishmania mexicana,Leishmania leishmania mexicanas,Leishmania mexicana amazonenses,Leishmania mexicana mexicanas,Leishmania mexicanas,amazonenses, Leishmania mexicana,amazonensis, Leishmania mexicana,leishmania mexicana, Leishmania,mexicana amazonensis, Leishmania,mexicana mexicana, Leishmania,mexicana mexicanas, Leishmania,mexicana, Leishmania,mexicana, Leishmania leishmania,mexicana, Leishmania mexicana,mexicanas, Leishmania leishmania
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D015800 Protozoan Proteins Proteins found in any species of protozoan. Proteins, Protozoan
D054468 Axoneme A bundle of MICROTUBULES and MICROTUBULE-ASSOCIATED PROTEINS forming the core of each CILIUM or FLAGELLUM. In most eukaryotic cilia or flagella, an axoneme shaft has 20 microtubules arranged in nine doublets and two singlets. Axonemes
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein

Related Publications

Richard J Wheeler, and Jack D Sunter, and Keith Gull
March 2019, Proceedings of the National Academy of Sciences of the United States of America,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
January 2024, Molecular microbiology,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
June 2001, Molecular and biochemical parasitology,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
October 2020, PLoS pathogens,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
August 2010, Current opinion in microbiology,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
August 2015, Journal of cell science,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
December 2015, The Journal of biological chemistry,
Richard J Wheeler, and Jack D Sunter, and Keith Gull
January 1999, The Journal of biological chemistry,
Copied contents to your clipboard!