Subcellular distribution, molecular dynamics and catabolism of plasmalogens in myocardium. 1989

L A Scherrer, and R W Gross
Department of Medicine, Washington University Medical School, St. Louis, Missouri 63110.

Recent studies have implicated accelerated sarcolemmal phospholipid catabolism as a mediator of the lethal sequelae of atherosclerotic heart disease. We have demonstrated that plasmalogens are the predominant phospholipid constituents of canine myocardium and that plasmalogens are hydrolyzed by a novel calcium independent plasmalogen selective phospholipase A2. Since the activities of phospholipases are modulated by the molecular dynamics and interfacial characteristics of their phospholipid substrates, we compared the molecular dynamics of plasmenylcholine and phosphatidylcholine vesicles by electron spin resonance spectroscopy and deuterium magnetic resonance spectroscopy. Plasmenylcholine vesicles have separate and distinct molecular dynamics in comparisons to their phosphatidylcholine counterparts as ascertained by substantial decreases in the angular fluctuations and motional velocities of probes attached to their sn-2 aliphatic constituents. Furthermore, since free radical oxidation of myocardial lipid constituents occurs during myocardial ischemia and reperfusion, we demonstrated that 1O2 mediated oxidation of plasmenylcholine resulted in the generation of several products which have chromatographic characteristics and molecular masses corresponding to 2-acyl lysophosphatide derivatives. Taken together, these studies underscore the biologic significance of the predominance of sarcolemmal plasmalogens present in mammalian myocardium and suggest that their catabolism by plasmalogen selective phospholipases and/or oxidative processes may contribute to the lethal sequelae of myocardial ischemia.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010955 Plasmalogens GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids. Phosphatidal Compounds,Plasmalogen,Alkenyl Ether Phospholipids,Compounds, Phosphatidal,Ether Phospholipids, Alkenyl,Phospholipids, Alkenyl Ether
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D054467 Phospholipases A2 Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES. Lecithinase A2,Phospholipase A2

Related Publications

L A Scherrer, and R W Gross
December 1987, The American journal of physiology,
L A Scherrer, and R W Gross
January 1986, The Canadian journal of cardiology,
L A Scherrer, and R W Gross
November 1997, Annals of nuclear medicine,
L A Scherrer, and R W Gross
November 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
L A Scherrer, and R W Gross
January 1982, Pharmacological research communications,
L A Scherrer, and R W Gross
January 1980, Advances in myocardiology,
L A Scherrer, and R W Gross
April 2009, Experimental cell research,
L A Scherrer, and R W Gross
January 1955, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
L A Scherrer, and R W Gross
January 1970, Ukrains'kyi biokhimichnyi zhurnal,
Copied contents to your clipboard!