Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions. 2016

Yumin Yang, and Daojin Li
Department of Life Science, Luoyang Normal University, Luoyang, 471022, China.

The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011794 Quercetin A flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. 3,3',4',5,7-Pentahydroxyflavone,Dikvertin
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D057927 Hydrophobic and Hydrophilic Interactions The thermodynamic interaction between a substance and WATER. Hydrophilic Interactions,Hydrophilic and Hydrophobic Interactions,Hydrophilicity,Hydrophobic Interactions,Hydrophobicity,Hydrophilic Interaction,Hydrophilicities,Hydrophobic Interaction,Hydrophobicities,Interaction, Hydrophilic,Interaction, Hydrophobic,Interactions, Hydrophilic,Interactions, Hydrophobic

Related Publications

Yumin Yang, and Daojin Li
May 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Yumin Yang, and Daojin Li
January 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Yumin Yang, and Daojin Li
November 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Yumin Yang, and Daojin Li
January 2020, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes,
Yumin Yang, and Daojin Li
January 2021, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering,
Yumin Yang, and Daojin Li
August 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Yumin Yang, and Daojin Li
July 2007, Journal of pharmaceutical and biomedical analysis,
Yumin Yang, and Daojin Li
November 2009, Guang pu xue yu guang pu fen xi = Guang pu,
Yumin Yang, and Daojin Li
February 2011, The Science of the total environment,
Copied contents to your clipboard!