Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. 1989

U Vijayraghavan, and M Company, and J Abelson
Division of Biology, California Institute of Technology, Pasadena 91125.

In this study we report the isolation of temperature-sensitive mutants that affect pre-mRNA splicing. A bank of approximately 1000 temperature-sensitive Saccharomyces cerevisiae strains was generated and screened on RNA gel blots by hybridization with an actin intron probe. We isolated 16 mutants defining 11 new complementation groups prp(rna)17-prp(rna)27 with four phenotypic classes of mutants and 21 mutants in the prp2-prp11 complementation groups (formerly rna2-rna11). The majority of the complementation groups share a phenotype of pre-mRNA accumulation, seen in all of the prp(rna)2-prp(rna)11 mutants. Three novel classes of mutants were isolated in this study. One class, consisting of two complementation groups, exhibits an accumulation of the lariat intermediate of splicing, with no change in the levels of pre-mRNA. The second class, also represented by two complementation groups, shows an accumulation of the intron released after splicing. The third novel class, comprising one complementation group, accumulates both pre-mRNA and the released intron. All mutants isolated were recessive for the splicing phenotype. Only 2 of the 11 complementation groups, although recessive, were not temperature sensitive. This study, together with previous isolation of the prp(rna)2-prp(rna)11 groups and the spliceosomal snRNAs, puts at least 26 gene products involved directly or indirectly in pre-mRNA splicing.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA

Related Publications

U Vijayraghavan, and M Company, and J Abelson
August 1994, The Journal of cell biology,
U Vijayraghavan, and M Company, and J Abelson
January 1989, Biochemical Society symposium,
U Vijayraghavan, and M Company, and J Abelson
June 1994, Current genetics,
U Vijayraghavan, and M Company, and J Abelson
October 1983, Journal of bacteriology,
U Vijayraghavan, and M Company, and J Abelson
March 2019, Cell chemical biology,
U Vijayraghavan, and M Company, and J Abelson
May 1977, Journal of bacteriology,
U Vijayraghavan, and M Company, and J Abelson
January 1990, Molecular biology reports,
U Vijayraghavan, and M Company, and J Abelson
January 2016, RNA biology,
U Vijayraghavan, and M Company, and J Abelson
November 1996, Molecular & general genetics : MGG,
U Vijayraghavan, and M Company, and J Abelson
April 1988, Journal of general microbiology,
Copied contents to your clipboard!